Студопедия


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Алгоритм расчета критерия




Расчет критерия при сопоставлении двух эмпирических распределений[7]

1. Расчеты целесообразно провести, пользуясь следующей таблицей.

Таблица 32

№ п/п xi f1i f2i p1i p2i P1i P2i |di|
1 2 3 4 5 6 7 8 9
               
               
               
…..                
N                

Занести в таблицу значения признака (наименования разрядов для сгруппированного распределения) — второй столбец, соответствующие им эмпирические частоты, полученные в распределении 1 (третий столбец) и в распределении 2 (четвертый столбец).

2. Подсчитать эмпирические частости (относительные частоты) по каждому разряду для распределения 1 по формуле:

,

где f1i - эмпирическая частота для данного значения (интервала);

N1 - количество наблюдений в выборке.

Занести эмпирические частости распределения 1 в пятый столбец.

3. Подсчитать эмпирические частости по каждому разряду для распределения 2 по формуле:

,

где f2i - эмпирическая частота для данного значения (интервала);

N2 - количество наблюдений в выборке.

Занести эмпирические частости распределения 2 в шестой столбец таблицы.

4. Подсчитать накопленные эмпирические частости для распределения 1 по формуле:

где Рi-1 – относительная частота, накопленная для предыдущего значения (интервала);

i - порядковый номер значения (интервала);

рi – абсолютная частота данного значения (интервала).

Полученные результаты записать в седьмой столбец.

5. Подсчитать накопленные эмпирические частости для распределения 2 по той же формуле и записать результат в восьмой столбец.

6. Подсчитать разности между накопленными частостями по каждому разряду di= Р1i – Р2i. Записать в девятый столбец абсолютные величины разностей (без их знака). Обозначить их как |di|.

7. Определить по седьмому столбцу наибольшую абсолютную величину разности |dmax|.

8. Подсчитать значение критерия по формуле:

,

где |dmax|- наибольшая абсолютная величина разности накопленных частот;

N1- количество наблюдений в первой выборке;

N2 – количество наблюдений во второй выборке.

5. Правило вывода:

Критические значения критерия Колмогорова-Смирнова постоянны:

λкрит.= 1,36 для уровня значимости р=0,95




λкрит.= 1,63 для уровня значимости р=0,99

Если λэмп. ≥ λкрит., то различия между распределениями статистически достоверны.

Если λэмп. < λкрит., то различия между распределениями статистически не достоверны.

Контрольные вопросы:

1. Какие задачи решает критерий хи-квадрат Пирсона?

2. Можно ли использовать критерий хи-квадрат Пирсона для сравнения распределений признаков, измеренных по номинативной шкале?

3. Каково правило принятия решения в критерии хи-квадрат Пирсона?

4. Какие задачи решает критерий Колмогорова-Смирнова?

5. Какова область применения данного критерия?

6. Можно ли использовать критерий Колмогорова-Смирнова для сравнения распределений признаков, измеренных по шкале наименований?

7. Как найти теоретические частоты при сравнении эмпирического распределения и равномерного распределения?

8. Как найти теоретические частоты при сравнении эмпирического распределения и нормального распределения?

9. Каково правило принятия решения в критерии Колмогорова-Смирнова?

Материалы для изучения темы:

а) основная литература:

1. Ермолаев О. Ю. Математическая статистика для психологов [Текст]: учебник / О. Ю. Ермолаев. - 5-е изд. - М.: МПСИ: Флинта, 2011. - 336 с. - С. 159-164.

2. Сидоренко Е. В. Методы математической обработки в психологии [Текст] / Е. В. Сидоренко. - СПб.: Речь, 2010. - 350 с.: ил. - С. 110-156.

б) дополнительная литература:

1. Кутейников А.Н. Математические методы в психологии [Текст]: учебно-методический комплекс / А. Н. Кутейников. - СПб.: Речь, 2008. - 172 с.: табл. - С. 85-103.



2. Суходольский Г. В. Математические методы в психологии [Текст] / Г. В. Суходольский. - 3-е изд., испр. - Харьков: Гуманитарный центр, 2008. - 284 с. – С. 294-305.





Дата добавления: 2015-04-20; просмотров: 569; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 10110 - | 7758 - или читать все...

Читайте также:

 

18.206.13.39 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.003 сек.