double arrow

Пример. Найти сумму степенного ряда


Найти сумму степенного ряда

1 - х + х2 - ... + (-1)n xn + ... .

Это ряд, составленный из членов геометрической прогрессии, у которой b1=1, q= -x. Следовательно, его сумма есть функция . Ряд сходится, если |x|<1. Поэтому равенство

справедливо лишь для значений х(-1; 1), хотя функция определена для всех значений х, кроме х= -1.

Можно доказать, что сумма степенного ряда S(x) непрерывна и дифференцируема на любом отрезке [a, b] внутри интервала сходимости.

Равенство (10.2), справедливое в интервале сходимости степенного ряда, называют разложением S(x) в степенной ряд.

Для степенных рядов справедливы следующие утверждения:







Сейчас читают про: