Некоторые вопросы строения сосудисто-капиллярной сети полушарий головного мозга 3 страница

Последующие исследования не внесли каких-либо изменений в тако­го рода представления о движении венозной крови из всех слоев белого и серого вещества через кору в венозную сеть, располагающуюся на по­верхности мозга в мягкой мозговой оболочке. Основной причиной этого, возможно, является то обстоятельство, что вопрос о венозном кровообра­щении в мозгу значительно реже является целью исследования, чем проблема артериального снабжения. Поэтому относительно изучения пе­ремещений венозной крови в мозгу накоплено пока еще мало фактиче­ских данных, и многие стороны этого вопроса требуют дальнейшей раз­работки.

Изучение хода организации сосудистой сети мозга в разных стадиях ее формирования указывает, что отток венозной крови из матрикса в


венозную сеть мягкой мозговой оболочки на ранних стадиях развития происходит по длинным венам, поднимающимся к поверхности мозгового пузыря через всю толщу его стенки.

Постепенное усложнение строения стенки мозгового пузыря ведет к появлению венозных сосудов с меньшей протяженностью хода основного ствола, размер которого определяется уровнем расположения клеточных масс на данном этапе миграции клеточных элементов из матрикса в кору.

В противоположность артериям мозгового вещества, дающим основ­ную массу особенно значительных по объему боковых ветвей на том или ином определенном уровне, характерной особенностью венозных сосудов является впадение в основной ствол одинаково мощных ветвей на всем иногда очень значительном протяжении хода вены, выносящей кровь из белого вещества на поверхность мозга. Боковые ветви значительного диаметра подводят кровь к стволу не только в белом веществе и в ниж­них слоях коры, но и на уровне расположения средних и даже самых верхних слоев серого вещества. Такой характер ветвления венозного ствола указывает на то, что одна и та же вена может служить для отто­ка венозной крови с весьма значительной территории мозгового вещества, на площади которой венозная часть капиллярного русла оказывается включенной в капиллярную сеть артериального характера. Обстоятельст­во это до некоторой степени может служить объяснением, почему мозго­вое вещество содержит как будто больше артерий, чем вен.

Имеющиеся в настоящее время экспериментальные и клинические данные показывают, что основная масса венозной крови из коры и белого вещества оттекает по венам через толщу серого вещества ввенозную сеть мягкой мозговой оболочки. Однако нельзя отрицать так­же, что после окончательного оформления коры и белого вещества по­лушарий частичный отток венозной крови из белого вещества может происходить и по глубоким его венам в вену Галена.

Таким образом, кровообращение в мозгу осуществляется следующим образом. Артериальная кровь поступает в cepоe и белое вещество по ар­териям с различной протяженностью их ствола и достигает глубоких слоев белого вещества, располагающихся в непосредственной близости от желудочков. Изучение организации сосудисто-капиллярной сети на раз­ных этапах онтогенетического развития не оставляет никакого сомнения в том, что единственным источником сосудов для мозгового вещества яв­ляется сосудистая сеть мягкой мозговой оболочки.

Действительно, первичные сосуды, появляющиеся в стенке мозгового пузыря на тех стадиях формирования ее, когда она представлена крае­вым покровом и начинающим диференцироваться матриксом, отходят от сосудов мягкой мозговой оболочки. Ход таких сосудов может быть про­слежен по всей толще стенки мозгового пузыря до матрикса, где сосре­доточивается основная масса их разветвлений и формирующаяся из них капиллярная сеть. Таким образом, данные, полученные нами при изуче­нии формирования сосудистой сети на различных этапах онтогенеза, по­казали, что наиболее длинные артерии представляют собой сосуды, вра­стающие в матрикс на самых ранних стадиях развития плода. Такого рода артерии, достигающие околожелудочкового белого вещества, соот­ветственно увеличенные в длине и диаметре, и наблюдал Беркель рентгеновским методом у человека. На всех этапах дальнейшего преоб­разования клеточного строения стенки мозгового пузыря усложнение организации сосудисто-капиллярной сети происходит за счет все новых и новых сосудов, отходящих от сосудов мягкой мозговой оболочки.


Соответственно иным теперь уровням расположения клеточных масс, нуждающихся в кислороде и питательных веществах, ветвление и образо­вание капиллярных сетей возле только что вросших сосудов происходит в формирующихся слоях коры. Одновременно с прорастанием новых со­судов и увеличением массы мозга происходит преобразование капилляров в сосуды и удлинение первичных сосудов. Последние продолжают достав­лять кровь в области мозгового вещества, располагающиеся вблизи на-ружной поверхности желудочков. Такой характер кровоснабжения отмечен во всех отделах стенки мозгового пузыря.

Рис. 74. Передний мозговой пузырь на стадии 8 слоев.

Эмбрион человека длиной 87 мм (по Гохштеттеру).

F — свод; Z. Н.— центральное серое вещество; А. с. а. — передняя мозговая артерия.

На рис. 74 видно, что не все участки формирующейся стенки мозго­вого пузыря содержат одно и то же количество клеточных элементов. В участках будущих подкорковых ядер сосредоточивается большая масса клеток, располагающихся в непосредственной близости от желудочков. Сосуды, снабжающие эти клеточные скопления, являются крупными ветвями артерий, непосредственно входящих в состав виллизиева много­угольника.

Выше уже указывалось, что сосуды, снабжающие подкорковые ядра, идут от места своего возникновения до питаемой ими области, не отдавая боковых ветвей. Все ветви и образующееся от них капиллярное сплетение оказываются сосредоточенными в том или ином подкорковом ядре. И здесь мы снова убеждаемся в том, что отхождение основной массы ветвей от артерии происходит на том уровне, до которого данный сосуд врастает на определенной ступени эмбриогенетического развития.

Ветвление артерий, снабжающих подкорковые образования, в преде­лах того или иного ядра безусловно не изолирует одно ядро от другого


а всех их вместе от окружающего белого вещества. Капиллярные сети подкорковых образований тесно связаны между собой и с капиллярной сетью белого вещества. Можно даже предположить, что отдельные ветви артерий подкорковых ядер выходят за границы какого-либо ядра и а настомозируют с ветвями артерий, снабжающих белое вещество. Вместе с тем если и имеют место анастомозы между ветвями артерий, снабжаю­щих то или иное подкорковое ядро, то они должны быть расположены в белом веществе, в непосредственной близости к соответствующим ядрам. Нам кажется вполне достоверным сообщение Измайловой (1948) о суще­ствовании анастомозов между артериями putamen и артериями островка в области ограды, хотя рисунки и микрофотографии Измайловой не дают представления, об анастомозировании какого рода и какого размера со­судов идет речь в ее работе. В то же время, в соответствии с нашими данными о развитии сосудистой сети мозга, мы не можем согласиться с описанием анастомозирования артерий подкорковых ядер с артериями белого вещества в подмозолистом белом веществе.

Изучая преобразование сосудистой сети в мозгу на тех стадиях его развития, когда закладывается и начинает оформляться мозолистое те­ло, мы могли отметить, что первичные артерии и вены проходят между волокнами этого образования и идут и тем уровням белого вещества, ко­торые они снабжают.

Часть таких длинных артерий и вен отличается наибольшей протя­женностью основного ствола. Они достигают белого вещества, располагаю­щегося в непосредственной близости к желудочкам, и там разветвляются. Изложенные выше данные о формировании сосудистой системы моз­гового вещества на различных стадиях онтогенетического развития за­ставляют нас с осторожностью относиться к мнению некоторых авторов о том, что кора и белое вещество полушарий головного мозга получают кровь не только по артериям, отходящим от артериальной сети мягкой мозговой оболочки, но и по артериям, снабжающим подкорковые ядра. Эти артерии якобы идут в восходящем направлении и снабжают, кроме околожелудочкового белого вещества, также и белое вещество, располо­женное на значительном расстоянии от желудочков, и нижние слои коры. С подобной точкой зрения мы встречаемся, например, в работах Пфайфера, утверждающего, что такого рода восходящие артерии легче всего наблюдать у новорожденных котят, с чем мы также не можем со­гласиться.

Данные, полученные в нашей лаборатории, указывают, что у ново­рожденных животных (так же как на предыдущих и на последующих этапах развития) кровоснабжение коры и белого вещества происходит за счет различных по длине артерий, источником которых является артери­альная сеть мягкой мозговой оболочки. То же можно сказать и в отноше­нии взрослых животных и человека. Пфайфер пытался показать возмож­ность анастомозирования артерий, поднимающихся из области желудоч­ков, с артериями, идущими из мягкой мозговой оболочки у взрослой обезьяны, но достаточно рассмотреть фотографии из его работы (1940), чтобы убедиться в том, что здесь представлены соединения капиллярно­го или прекапиллярного размера между двумя венами в глубоких частях белого вещества (рис. 75, а, б), но не подлинные анастомозы между артериями.

Мы в свою очередь имели возможность убедиться в том, что анасто­мозы между венами и их ветвями в белом веществе и особенно в его наиболее глубоких слоях могут встречаться не только в патологии, но и в норме. Анастомозы между артериями в норме встречаются, однако,





Рис. 75. Микрофотография, иллюстрирующая анастомозирование артерии коры, идущей в нисходящем напра­влении, с артерией белого вещества, идущей в восходящем направлении (по Пфайферу). Обращает на себя внимание анастомоаирование венозных стволов, принятых Пфайфером аа артериальные. На рис. 75, а показан участок микрофотографии квадрата рисунка 75, б при большем увеличении.


крайне редко. Наличие их обычно указывает на отклонения от нор­мального типа строения сосудистой сети мозгового вещества полушарий головного мозга.

Мы не можем также признать достоверным указание Пенфильда на широкое анастомозирование радиальных артерий с артериями подкорко­вых образований.

В действительности имеют место непрерывные связи между сосуди­сто-капиллярной сетью белого вещества и сетью подкорковых ядер, но эти связи осуществляются только в капиллярном русле.

Таким образом, кора и белое вещество получают кровь по артериям, отходящим от артериальной сети мягкой мозговой оболочки. Подкорко­вые ядра снабжаются артериями, основная масса разветвлений которых сосредоточивается в том или ином ядре. Не исключена возможность выхождения отдельных артериальных ветвей за границы ядра и анасто­мозирование их с ветвями артерий белого вещества в непосредственной близости к ядру. Незначительное количество анастомозов не может обеспечить непрерывность сосудистой сети подкорковых ядер и окружаю­щего их белого вещества.

Непрерывность сосудистых сетей подкорковых ядер и белого вещества осуществляется только в капиллярном русле.

Продукты обмена веществ нервной ткани, поступающие в ток крови, выводятся из серого и белого вещества по венам в направлении, обрат­ном току крови в артериях.

Следовательно, если артериальная кровь поступает в мозг от поверх ности его в глубину, то отток основной массы венозной крови происходит из глубоких слоев мозгового вещества в венозную сеть мягкой мозговой оболочки.

Наличие многочисленных разветвлений венозных стволов и образова­ние капиллярных сетей на всех уровнях поперечника полушария и осо­бенно в сером веществе создает сложное взаимное расположение арте­риальной и венозной части капиллярного русла.

Решение вопроса о характере взаимоотношений артериальных и ве­нозных капилляров с нервной клеткой является ключом для понимания протекающих в нервной клетке процессов обмена веществ. Но прежде чем перейти к изложению литературного и собственного материала, касаю­щегося соотношения клеточного и сосудистого компонентов мозгового ве­щества, мы считаем необходимым изложить учение о тонком строении сосудисто-капиллярной сети в мозгу, указать этапы, которые оно прошло при своем развитии, описать и то состояние, в котором находится оно в настоящее время.

Первым этапом в развитии учения о собственно ангиоархитектонике полушарий головного мозга надо считать довольно продолжительный период с 1872 по 1928 г. В течение этого периода в литературе господ­ствовало представление о снабжении мозгового вещества «конечными ар­териями» по типу их в других органах тела, например, в почке, ретине, селезенке и т. д.

Известно, что в этих органах каждая артерия имеет особый соб­ственный бассейн снабжения, ограниченный ее ветвями и их разветвле­ниями. Вследствие отсутствия связи между отдельными артериями каждая из них представляет собой обособленное в анатомическом отношении целое. Понятно, что закупорка такой анатомически конечной артерии бу­дет иметь своим следствием выпадение соответствующей части ткани органа, причем размер области распада будет точно соответствовать ве­личине бассейна, получавшего кровь по закрытому сосуду. Таким обра-


зом, эта артерия будет конечной не только в анатомическом, но и в фи­зиологическом значении этого определения.

По аналогии с подобного рода выпадениями ткани в ряде органов при закрытии той или иной питающей этот орган артерии Конгейм пред­положил точно такой же характер выпадения и в мозговой ткани. Таким образом, инфаркты мозгового вещества нашли очень простое объ­яснение в предположении о том, что артерии мозга являются конечными по типу своего анатомического строения. Представления такого рода прочно укрепились в неврологической литературе благодаря все попол­нявшимся клиническим данным, совпадающим с представлением о за­крытии именно конечной артерии мозга тромбом, эмболом или каким-ли­бо другим болезненным процессом и связанным с этим закрытием вы­падением нервной ткани.

Представления об артериях мозга как о конечных в функциональном и анатомическом отношении из клинической литературы перешли и в тео­ретические воззрения исследователей. Экспериментальная проверка этого представления инъекций сосудов оказалась не в состоянии пролить свет на действительные соотношения в сосудистой сети мозга. Причиной этого явилась низкая техника эксперимента. Для разрешения этого во­проса правильный выбор метода исследования приобретает особое значение.

Действительно, выяснение подлинного строения сосудисто-капилляр­ной сети в мозгу возможно лишь при условии полного выявления этой сети при обработке ее тем или иным способом.

Из многих, как мы увидим дальше, применяющихся в настоящее время методов выявления сосудистой сети мозга экспериментаторы в начальном периоде исследований в этих целях располагали лишь одним методом — методом инъекции.

Полная инъекция сосудистого и главным образом капиллярного рус­ла окрашенными массами требует от исследователя соблюдения многих условий, а именно правильного выбора массы с определенной величиной частиц, определенной силы и скорости инъекции и т. д. Несоблюдение даже части этих условий может служить причиной искажения действи­тельности в эксперименте.

Именно недостаточностью технической стороны исследования обусловлено изображение сосудистой сети в том виде, как она представ­лена, например, у Шарпи. Как можно видеть на рис. 72, взятом из рабо­ты этого автора, артерии строго конечны, так как снабжаемые ими бас­сейны совершенно изолированы друг от друга. Изоляция бассейнов рас­пространяется даже и на капиллярные сети, так как последние точно ограничиваются областью данного сосуда.

Данные, полученные Шарпи, не являются, к сожалению, отражением того, что работа его была предпринята в самом начале разработки во­проса о кровоснабжении мозга. Много лет спустя несовершенный метод инъекции не раз являлся причиной ложных утверждений о конечном ха­рактере артерий мозгового вещества (см., например, работы Эбби, 1934; Шелшира, 1927).

Несоответствие представления об артериях мозга как конечных дей­ствительному строению его сосудистой сети выявлялось всякий раз, как только в эксперименте использовалась более высокая техника инъекции. Достаточно убедительной в этом отношении является работа Дюре (1874), который инъекцией окрашенной желатины в сосудисто-капилляр­ное русло мозга выявил непрерывную капиллярную сеть, объединяющую сосудистое русло всех радиальных артерий мозгового вещества. Такое


строение сосудистой сети указывало на возможность перехода крови из одного участка мозга в другой в широких пределах и не могло служить для объяснения причин выпадения нервной ткани при закупорке пи­тающей ее артерии. Поэтому для того чтобы совместить выявленное им анатомическое строение сосудистой сети мозга с неврологическими кли­ническими данными, Дюре предположил, наряду с непрерывной сетью, наличие вмозгу слепо оканчивающихся аа. penicilles.

Сплошная сосудисто-капиллярная сеть выявлялась в мозгах человека и различных животных также и при анатомогистологическом изучении ее многими другими исследователями. Так, например, Тихомиров (1880) наблюдал непрерывность сосудисто-капиллярной сети в мозгу человека при инъекции артериального русла окрашенными массами. Ту же карти­ну получил Кобб (Cobb, 1925—1926) в мозгу кроликов при инъекции в сосудистую сеть раствора краски. Соотношения, полученные при инъек­ции, подтвердились при гистологической обработке препаратов мозгов обезъян и кроликов методом Гольджи-Кокса в опытах Лоренцо де Но (1927).

Однако наиболее веские доказательства в пользу непрерывной сосу­дисто-капиллярной сети в мозгу были приведены в монографии Пфайфе-ра, опубликованной в 1928 г.

Пользуясь методом инъекции сосудистого русла мозга тушью в за­крытом черепе, Пфайфер получил возможность изучения полностью вы­явленной сосудисто-капиллярной сети мозга на серии препаратов.

Полученные результаты дали Пфайферу право категорически отверг­нуть понятие конечных артерий для сосудов мозга и утверждать сущест­вование непрерывной сосудисто-капиллярной сети, располагающейся в трех плоскостях.

Пфайфер считал, что непрерывность сосудисто-капиллярной сети в мозгу создается многочисленными анастомозами, соединяющими артерию с артерией, вену с веной, а также артерию с веной, помимо объединяю-щего их капиллярного русла. Наличие анастомозов между упомянутыми сосудами и наличие в мозгу сети капилляров, делает возможным пере­мещение крови в настолько широких пределах, что если бы красные кровяные шарики были способны к передвижению, каждый из них мог бы пройти от затылочного полюса к лобному, не покидая сосудисто-ка­пиллярной сети.

Таким образом, создавая представление о сосудисто-капиллярной сети мозга как о едином целом, где нельзя выделить областей снабжения отдельных артерий, Пфайфер как будто имел в виду непрерывность, осу­ществляемую вне капиллярного русла.

Действительно, в табл. 1, приложенной к монографии Пфайфера, вышедшей в свет в 1928 г., можно видеть артериальный анастомоз, рас­полагающийся в верхних слоях серого вещества обонятельного мозга кошки, по своим размерам не уступающий диаметрам тех артерий, которые он соединяет. В последующей книге, опубликованной в 1930 г., несколько примеров анастомозов между мозговыми сосудами отмечены на микрофотографиях, иллюстрирующих работу. С особой отчетливостью представление о существовании анастомозов в сосудистой сети мозга Пфайфер подчеркивает в своем исследовании, проделанном на гипереми-рованных мозгах детей, погибших при явлениях асфиксии (1930).

Но вместе с тем Пфайфер нигде не указывает, какого размера сосу­ды относит он к категории анастомозов.

В критическом обобщении результатов работы Дюре Пфайфер отме­чает, что Дюре, вследствие несовершенства технических приемов исследо-


вания, не мог установить отчетливого различия между капилляром и ана­стомозом.

Исходя из этого замечания, можно было бы предполагать, что сам Пфайфер считал сосуд анастомозом в том случае, если диаметр этого сосуда превышал размер капилляра.

Однако целый ряд положений в его работах говорит о том, что в понятие непрерывности сосудисто-капиллярной сети мозга Пфайфер вкладывает представление только о непрерывной связи посредством капиллярного русла и понимает под анастомозом сосуд капиллярно­го размера. Таков, например, чрезвычайно положительный отзыв Пфайфера о работе Лоренцо де Но (1927), который смог доказать не­прерывность сосудистой сети в мозгу лишь в капиллярном русле, создаю­щем для мозга действительно трехмерную сеть без начала и конца. Никакого упоминания о связях между сосудами коры иного порядка, чем капилляры, в работе Лоренцо де Но нет.

Результаты работы этого автора Пфайфер расценивал как получен­ное другим методом подтверждение своего мнения о непрерывном ха­рактере сосудистой сети в мозгу.

Соглашаясь с Лоренцо де Но, Пфайфер присоединяется к его пред­ставлениям о капиллярном характере связей в непрерывной сосудистой сети мозга и относит капилляр к категории анастомозов.

При изучении работ Пфайфера так и не удается установить, какого калибра сосуды этот автор имел в виду, когда говорил об анастомозах в артериальной части сосудистой сети мозга. Приведенный в этих работах иллюстративный материал не подтверждает его мнения о существовании анастомозов между артериями мозга, так как в результате ошибочной классификации сосудов мозга на всех микрофотографиях представлены не артерии мозга, а вены. Поэтому, если предположение Пфайфера об анастомозах и подтвердится, то оно будет относиться только к мозговым венам. Иначе говоря, несмотря на многократно повторяющиеся указания о наличии анастомозов в артериальной части сосудистой системы мозга, создающих ее непрерывность, Пфайфер смог показать непрерывностъ артериальной сети мозга, осуществляемую только посред­ством капиллярного русла.

Характерно, что проверка данных Пфайфера другими исследователя­ми дала подтверждение его учения лишь в том, что в мозгу дей­ствительно нельзя выделить анатомически обособленных артерий, развет­вляющихся и образующих капиллярную сеть в одной определенной, принадлежащей этой артерии области мозгового вещества. Последующие исследования показали, что все серое и белое вещество каждое в отдель­ности и взятые вместе объединяются капиллярной сетью, создающей подлинную непрерывность во всей сосудисто-капиллярной системе мозга. Наибольшие по размеру анастомозы, соединяющие артерию с артерией или вену с веной, представлены прекапиллярами. Следовательно, анастомозом является сосуд с диаметром в 10—14 м. Лишь в очень редких патологических случаях можно обнаружить соеди­нение сосудов анастомозами более крупного калибра. Обычно анастомозы диаметром 10—14 мсоединяют между собой артериолы и венулы (Кобб, 1931; Кэмпбелл, 1938; Вольф, 1938; Форбс, 1938, и др.).

Для понимания общих принципов кровообращения в мозгу большое значение имеют положительные доказательства или отрицание существо­вания артерио-венозных анастомозов в сосудистой сети. Известно, что предположение о возможности перехода крови из артерий в вены по многочисленным коротким, связывающим их анастомозам было в свое


время сделано Пфайфером, придававшим артерио-венозным анастомо­зам большое значение в распределении тока крови в мозгу.

Однако в последовавших работах, ставивших своей задачей изучение анатомических основ мозгового кровообращения, наличие артерио-веноз-ных анастомозов в сосудистой сети мозга подтверждено не было (Венст-лер, 1936; Форбс, 1938; Вольф, 1938; Кэмпбелл, 1938; Шаррер, 1940; Б, Н. Клосовский, 1942, и др.).

На основании результатов ряда работ сотрудников руководимой на­ми лаборатории мы можем вполне определенно утверждать, что сосуды коры и белого вещества объединены в одно целое и представляют собой непрерывную сеть. В сплошной сети сосудов нельзя выделить ни отдель­ных артерий, питающих какой-либо определенный участок мозгового' ве­щества, ни отдельных вен, собирающих кровь с одной принадлежащей ей области.

Непрерывность сосудистого русла создается сосудами капиллярного, или самое большее, прекапиллярного размера, формирующими подлин­ную сеть, расположенную в трех плоскостях. Сеть капиллярных сосудов является основой, объединяющей кровообращение не только отдельно взятых серого и белого вещества, но того и другого совместно с крово­обращением всех подкорковых образований в одно целое.

Единство мозгового кровообращения, следовательно, осуществляется посредством капиллярного русла. Лишь очень редко в сосудисто-капил­лярной сети мозгового вещества можно обнаружить анастомозы крупнее прекапиллярного размера, связывающие артерию с артерией и вену с веной вне капиллярного русла. При этом анастомозы чаще соединяют вену с веной, чем артерию с артерией (рис. 76, а). В полном соответствии с данными некоторых исследователей мы отмечаем, что анастомозы встречаются в венозной части сосудистой сети мозга чаще, чем в артериальной, и среди венозных сосудов белого вещества чаще, чем сре­ди венозных сосудов коры.

На многих сериях препаратов, обработанных несколькими различны­ми методами, выявляющими сосудисто-капиллярную сеть, мы никогда не наблюдали непосредственных связей между артерией и веной, т. е так называемых артерио-венозных анастомозов.

На основании результатов изучения большого материала мы пришли к выводу, что связи артерии с артерией и вены с веной крупнее прека­пиллярного размера вне капиллярной сети должны быть отнесены к ред­ким исключениям. Наличие их является результатом сохранения в том или ином участке сосудистой сети мозга эмбрионального строения, характерного для самого раннего этапа ее организации.

При разборе фактических данных, полученных при исследовании со­судистой сети мозга в процессе ее развития, мы уже видели, что опреде­ленные стадии развития дают нам возможность наблюдать совершенно особое расположение сосудов в стенке мозгового пузыря. Сосуды, прора­стающие в матрикс, идут через поперечник мозгового пузыря параллель­ными стволами, соединяющимися между собой поперечными сосудами, почти такого же размера, как объединяемые ими стволы. Характерно, что преобразование сосудистого дерева и возникновение капиллярных сетей происходят именно там, где наличие нервных клеток вызывает наиболь­шую потребность в кислороде и питательных веществах. Так, например, на стадии восьмислойной стенки мозгового пузыря капиллярные сети рас­полагаются там, где наблюдается наибольшее скопление клеточных элементов (в матриксе, коре, полосатых слоях). В других же слоях (в промежуточном и переходных), в которых сосудистая сеть в это время


Рис. 76, а к б. Анастомозирование ветвей мозговых вен между собой в белом веществе и артерий в ретикулярной субстанции.

Импрегнация по методу В. И. Клосовского. Увеличение 100.

а — микрофотография с препарата мозга собаки, погибшей от острого отека через не­сколько часов после закрытия левой средней мозговой артерии. Представлено белое вещество области, расположенной между передней и средней мозговой артерией;

(анастомозирование вен);

б — анастомозирование ветвей артерий ретикулярной субстанции продолговатого мозга

между собой.


Рис. 76, в и г. Анастомозирование ветвей мозговых вен между собой в белом веществе и артерий ретикулярной субстанции.

в — анастомозирование ветвей артерий, вступающих в ретикулярную субстанцию про­долговатого мозга с одной поверхности; г — анастомозирование ветвей артерий, вступаю­щих в ретикулярную субстанцию продолговатого мозга с противоположных поверхностей. Микрофотографии б, в, г, сняты с препаратов продолговатого мозга, сосудистая систе­ма которого была инъицирована тушью. Увеличение 20. Анастомозы (А) указаны стрелкой.


находится на более ранних стадиях своего развития, капиллярные сети почти или совсем не развиты. В этих слоях параллельно следующие че­рез стенку пузыря крупные сосуды соединены поперечными анастомозами.

Таким образом, непосредственная связь артерии с артерией или вены с веной сосудом крупного калибра представляет собой более при­митивный тип соединения, чем капиллярная сеть. Если принять во вни­мание, что поздно оформляющие свою сосудисто-капиллярную сеть слои поперечника полушарий в окончательно сформированном мозгу соответ­ствуют областям расположения белого вещества, то становится понят­ным, почему анастомозы в мозгу взрослого животного чаще встречаются в белом веществе, а не в коре.

Таким образом, изучение организации сосудисто-капиллярной сети мозга в онтогенезе определенно указывает, что анастомозы крупнее прекапиллярного размера представляют собой не что иное, как отраже­ние эмбрионального характера строения сосудистой сети.

Интересно, что в составе сосудистой сети отделов головного мозга, филогенетически более старых, чем кора полушарий, можно отметить наличие анастомозов крупнее капиллярного размера. С подобного рода явлениями встретились Е. Н. Космарская и Е. Г. Балашева (1950) при изучении особенностей кровоснабжения ретикулярной субстанции про­долговатого мозга. Просматривая серии препаратов мозга кошек и собак, сосудистая сеть которых была инъицирована тушью, трипановой синью или импрегнирована серебром по методу Б. Н. Клосовского, эти авторы установили, что артерии ретикулярной субстанции широко анасто-мозируют между собой. Анастомозы различного калибра, по своей величине в несколько раз превосходящие размер прекапилляра, соеди­няют ветви как одной и той же (рис. 76, б), так и различных артерий между собой (рис. 76, в, г).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: