double arrow

Пример решения 6.1


Согласно своему варианту записываем уравнение химической реакции, например:

K2Cr2O7 + Ti2(SO4)3 + H2SO4 = Cr2(SO4)3 + Ti(SO4)2 + H2O + K2SO4.

Уравнивание стехиометрических коэффициентов ионно-электронным методом проводим по определенному алгоритму.

1) Проставим для всех элементов степени окисления:

+ + = + + + .

2) Выясним элементы, меняющие степень окисления в результате реакции и определим, какое вещество выполняет роль окислителя (принимает электроны), а какое – роль восстановителя (отдает электроны).

В данной реакции изменяют степени окисления элементы Cr и Ti, при этом K2Cr2O7 выполняет роль окислителя, а Ti2(SO4)3 – роль восстановителя, H2SO4 играет роль среды.

3) Запишем реакцию в ионно-электронном виде и подчеркнем окислитель и восстановитель. Для этого учитываем диссоциацию молекул на ионы, а слабые электролиты (например, Н2О, оксиды и сульфиды металлов), если они встречаются в реакции, оставляем в молекулярном виде. Получаем:

2K+ + (Cr2O7)2- + 2Ti3+ + 3(SO4)2- + 2H+ + (SO4)2– =

= 2Cr3+ + 3(SO4)2- + Ti4+ + 2(SO4)2- + H2O + 2K+ + (SO4)2-.

4) Записываем полуреакции окисления и восстановления, рассматривая только подчеркнутые частицы. Сравниваем количество основных элементов справа и слева и, при необходимости, вводим уравнивающие коэффициенты (в данном случае ставим 2 перед Ti4+).




(Cr2O7)2- → 2Cr3+;

окислитель

2Ti3+ → 2Ti4+.

восстановитель

5)Отметим число принятых электронов в полуреакции восстановления и число отданных электронов в полуреакции окисления.

(Cr2O7)2- + 6 2Cr3+;

2Ti3+ – 2 2Ti4+.

6) Проводим в каждой строчке ионное уравнивание. Баланс по кислороду проводим в виде H2O, а по водороду – в виде Н+.

В данном случае в верхней полуреакции справа вводим 7H2O, а в левую часть – добавляем 14 Н+. Во второй полуреакции изменений нет. Получаем следующее:

14Н+ +(Cr2O7)2- + 6 → 2Cr3+ + 7H2O;

2Ti3+ – 2 → 2Ti4+.

7) Проводим электронный баланс, принимая во внимание, что число отданных восстановителем электронов всегда равно числу электронов, принятых окислителем. Справа ставим вертикальную черту, находим наименьшее общее кратное и проставляем соответствующие коэффициенты.

14Н+ +(Cr2O7)2- + 6 → 2Cr3+ + 7H2O; 1

2Ti3+ – 2 → 2Ti4+. 3

8) Складываем левые и правые части полуреакций, умножив на соответствующие коэффициенты:

14H+ + (Cr2O7)2- + 6Ti3+ = 2Cr3+ + 7H2O + 6Ti4+.

9) Теперь под знаком равенства поставим короткую вертикальную черту и для элементов, стоящих слева, добавим связанные с ними частицы, которые раньше мы не учитывали. Как видно из 3): для (Cr2O7)2- это 2К+, для 2Ti3+ – это 3(SO4)2-, а для 2Н+ – это (SO4)2-. Те же самые частицы записываем справа от черты. Получаем следующее:

14H+ + (Cr2O7)2- + 6Ti3+ = 2Cr3+ + 7H2O + 6Ti4+;

7(SO4)2- + 2K+ + 9(SO4)2- | 7(SO4)2- + 2K+ + 9(SO4)2-.

10)Учитывая добавленные ионы, составляем полное уравнение со всеми стехиометрическими коэффициентами:



K2Cr2O7 +3Ti2(SO4)3 +7H2SO4 = Cr2(SO4)3 +6Ti(SO4)2 + 7H2O+K2SO4.

Теперь определим термодинамическую вероятность протекания данной окислительно-восстановительной реакции. Как показано в теме III, для этого необходимо провести расчет убыли свободной энергии (ΔG0298 химической реакции).

Записываем из 7) полуреакции окисления и восстановления и, пользуясь данными Приложения 3, приводим для них справа значения электродных потенциалов (φ0):

14Н++(Cr2O7)2- 2Cr3++7H2O; φ = φ = +1,33 В;

2Ti3+ 2Ti4+ φ = φ = –0,04 В.

Рассчитываем ЭДС протекающего процесса (ε0):

ε0 = φ – φ = 1,33 - (-0,04) = 1,37 В.

Далее рассчитываем ΔG химической реакции:

ΔG0298 = – zFε0,

где z – число электронов, переданных от восстановителя к окислителю. С учетом электронного баланса z = 6;

F – число Фарадея, равное 96500 Кл/моль.

Чтобы ответ получить в кДж, вводим множитель 10-3:

ΔG0298 = -6×96500×1,37×10-3 = -793,2 кДж.

Так как ΔG0298 < 0, то данная реакция термодинамически вероятна, т.е. может протекать в прямом направлении.

Задание 6.2. Для двух металлов (табл. VI.2), находящихся в растворах своих солей с определенной концентрацией:

6.2.1. Составьте схему гальванического элемента.

6.2.2. Запишите реакции, протекающие на катоде и аноде.

6.2.3. Рассчитайте ЭДС 0) гальванического элемента и ΔG0298 протекающей реакции.







Сейчас читают про: