double arrow

Вектор-функция скалярного аргумента, годограф вектор функции


Вектор-функция скалярного аргумента

Определение. Если каждому значению параметра из некоторого промежутка отвечает определенный вектор (зависящий от ), то вектор называется векторной функцией (кратко вектор-функция) от скалярного аргумента и в этом случае пишут:

. (1.1)

При изменении аргумента вектор изменяется как по величине, так и по направлению. В дальнейшем будем предполагать, что изменяется в промежутке, конечном или бесконечном.

Будем считать, что вектор исходит из начала координат, т.е. − радиус-вектор некоторой точки . В этом случае при изменении параметра конец вектора опишет линию , называемую годографом векторной функции . При этом начало координат называют полюсом годографа. Уравнение (1.1) называют векторным уравнением кривой (рис. 1.1).

Если у вектора меняется только модуль, то годографом его будет луч, исходящий из полюса. Если модуль вектора постоянен и меняется только его направление, то годограф есть линия, лежащая на сфере с центром в полюсе и радиусом, равным модулю вектора .

Рис. 1.1

Если через обозначить проекции вектора на оси прямоугольной декартовой системы координат в пространстве, то эти величины для каждого значения параметра в свою очередь принимают определенные числовые значения и поэтому являются скалярными функциями скалярного аргумента :

, , . (1.2)

И тогда

. (1.3)

Таким образом, задание векторной функции скалярного аргумента равносильно заданию трех скалярных функций того же аргумента. Т.к. уравнение (1.1) является уравнением некоторой кривой в пространстве, то ту же кривую задают уравнения (1.2). Уравнения (1.2) − обычные параметрические уравнения кривой в пространстве.

Пример. Рассмотрим кривую, заданную параметрически с помощью уравнений

, , .

Эта кривая называется винтовой линией. Ее векторное уравнение

.

При любом значении параметра . Это означает, что винтовая линия расположена на цилиндре . Отсюда следует, что, когда точка движется по винтовой линии, ее проекция на плоскости перемещается по окружности радиуса и с центром в начале координат, причем является полярным углом точки . Когда точка описывает полную окружность, аппликата точки винтовой линии увеличивается на . Эта величина называется шагом винтовой линии.


Сейчас читают про: