Электрохимическое окисление и восстановление

Анодное окисление и катодное восстановление составляют основу процесса электролиза, происходящего в электролизере. Электрохимическую обработку целесообразно применять при очистке концентрированных органических и неорганических загрязнений и небольших расходах сточных вод. При этом из воды могут быть удалены цианиды, роданида, амины, спирты, альдегиды, нитросоединения, сульфиды, меркаптаны, ионы тяжелых металлов РЬ 2+, Sn2+, Нg 2+, Cr2+, Сu2+, As2+ и др. В процессах электрохимического окисления вещества, находящиеся в сточной воде, полностью распадаются с образованием CO2, NH3 и воды или образуют простые и нетоксичные вещества, которые можно удалить другими методами. При электрохимическом восстановлении на катоде могут быть рекуперированы металлы.

В качестве анодов используют различные электролитически нерастворимые материалы: графит, магнетит, диоксиды свинца, марганца и рутения, которые наносятся на титановую основу. В качестве катодов обычно применяют легированную сталь, сплавы вольфрама с железом или никелем, цинк, свинец. На аноде протекает реакция электрохимического окисления, на катоде идет реакция восстановления. Кроме основных процессов электроокисления и восстановления, одновременно могут протекать электрофлотация, электрофорез, электрокоагуляция.

Чтобы предотвратить смешение продуктов электролиза, особенно газов, которые могут образовывать взрывоопасные смеси (водорода и кислорода), применяют керамические, полиэтиленовые, асбестовые и стеклянные диафрагмы, разделяющие катодное и анодное пространство.

Процесс анодного окисления осуществляется в электрлитических ваннах, разделенных на несколько отсеков, в которых обрабатываемые воды перемешиваются сжатым воздухом. При электролизе щелочных вод, содержащих цианиды, на аноде происходит окисление цианид-ионов с образованием цианат-ионов и дальнейшим их электрохимическим окислением до конечных продуктов:

СN- + 2OH- — 2е →CNO- + Н2О

CNO- + 2Н2О→NH4 + +CO32-

или CNO- + 4ОН- — 6е →2 СО2+ N2 +2Н2О

В целях повышения электропроводности сточных вод, снижения расхода электроэнергии и интенсификации процесса окисления в сточные воды добавляют минеральные соли.
Катодное восстановление металлов происходит по схеме:

Меn+ + ne → Mе°,

При этом металлы осаждаются на катоде и могут быть рекуперированы. Реакция восстановления хрома пртекает следующим образом:

Сг2О7 +14 Н+ + 12e → 2Сr + 7Н2О.

Частицы металла отрываются от катода под действием сил тяжести и оседают в нижнюю часть аппарата.

На процесс электролиза влияет анодная плотность тока, межэлектродное пространство (3 см для анодного окисления), скорость движения воды, рН, конструкция электродов. Различают плоские и объемные электроды. Последние имеют преимущество при проведении процессов извлечения металлов из сильно разбавленных по ионам металла растворов. Объемные электроды бывают пластинчатыми, объемно-пористыми и псевдоожиженными. В электродах первых двух типов раствор проходит через каналы электродов из блока пластин или камеры, заполненной электропроводным материалом. Электроды третьего типа представляют собой подвижные слои электропроводного дисперсного материала (графита, металла), контактирующие с расположенными в объеме слоя токосборниками.

Эффект очистки рассмотренными методами составляет 80-100 %. Локальные установки по электрохимическому окислений и восстановлению применяются на предприятиях машиностроительной, приборостроительной, химической, нефтехимической, целлюлозно-бумажной и других отраслей промышленности.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: