Дискретный аналог

Ранее был рассмотрен способ аппроксимации члена Г Ф /дx) при использовании кусочно-линейного профиля Ф. Для конвективного члена сначала кажется естественным такой же выбор профиля. В результате получим

и

Множитель 1/2 является следствием предположения о расположении гранен контрольного объема посередине между узловыми точками; любые другие интерполяционные множители могут появиться при другом расположении граней контрольного объема. В этом случае уравнение (5.2) можно записать в следующем виде:

,

где Г e и Г w принимает разные значения μ, λ и т.д.

Для того чтобы записать уравнение более компактно, введем два новых символа

и .

Обе эти величины имеют одинаковую размерность

и .

F показывает интенсивность конвекции (или течения); D — диффузионная проводимость. Следует заметить, что F может быть больше или меньше нуля в зависимости от направления течения жидкости, D всегда положительна.

С учетом этих новых обозначений дискретный аналог примет вид

, (5.3)

где , ,

Примечание:

  1. Поскольку из условия непрерывности Fe=Fw, то получим aP=aE+aW, ru=const, (ru)w- (ru)e=0. Отметим, что дискретный аналог обладает этим свойством только в том случае, если поле скоростей удовлетворяет требованиям непрерывности.
  2. Полученный дискретный аналог представляет собой следствие использования кусочно-линейного профиля Ф. Эта форма известна так же как центрально-разностная схема (разложение в ряды Тейлора).
  3. Рассмотрим пример: De=Dw=1, Fe=Fw=4. Если заданы Ф E и Ф W, то из полученного нами дискретного аналога можно получить Ф P. Рассмотрим два набора значений:
    1. Ф E = 200, Ф W = 100 => Ф P = 50
    2. Ф E = 100, Ф W = 200 => Ф P = 250.

Поскольку на самом деле Ф P не может лежать вне области значений 100…200, определенных соседними точками, то эти результаты совершенно нереальны.

  1. Когда |F|>2D, в зависимости от того F больше или меньше нуля, можно получить отрицательные aW или aE. Это приведет к нарушению одного из основных правил и возможности неправильного результата.
  2. Отрицательные коэффициенты могут также означать, что нарушается выполнение критерия Скарбороу. Таким образом, поточечное решение дискретного аналога может расходиться. Поэтому решение задач конвекции с помощью центрально-разностной схемы ограничено малыми числами Рейнольдса (отношением F/D).
  3. При нулевой диффузии (Г=0) (μ = 0) схема приводит к значению аP = 0. В этом случае уравнение (5.3) невозможно решить с помощью поточечного метода и многих других итерационных методов/

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: