Токи при размыкании и замыкании цепи

При всяком изменении силы тока в проводящем контуре возникает э.д.с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т.е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. Ei, сопротивление R и индуктивность L. Под действием внешней э.д.с. в цепи течет постоянный ток I o =E/ R (внутренним сопротивлением источника тока пренебрегаем).

В момент времени t = 0 отключим источник тока. Ток через катушку индуктивности начнет уменьшаться, что приведет к возникновению эдс самоиндукции Es= – L (d I /d t), препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I =E s / R, или

IR =– L (d I /d t). (18.1)

Разделив переменные, получим d I / I = – R d t / L. Интегрируя это уравнение по I (от I o до I) и t (от 0 до t), находим ln(I / I o) = – Rt / L, или

I (t) = I o exp (– t / τ), (18.2)

где τ = L / R – постоянная, называемая временем релаксации, равная времени, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника э.д.с. сила тока убывает по экспоненциальному закону (18.2) и определяется кривой 1 на рис. (19). Чем больше индуктивность цепи и меньше сопротивление, тем больше τ и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э.д.с E возникает э.д.с самоиндукции Es= – L (d I /d t), препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома IR = E + Es или

IR = E – L (d I /d t). Введя новую переменную u = IR – E, преобразу- Рис.19. ем это уравнение к виду d u / u = – d t / τ, где τ – время релаксации.

В момент замыкания (t = 0) сила тока I =0 и u = –E. Следовательно, интегрируя по u (от –E до IR –E) и t (от 0 до t), находим ln[(IR –E)/(–E)] = – t / τ, или

I (t)= I o[1-exp(– t / τ)], (18.3)

где I o= E/ R – установившийся ток (при t → ¥).

Таким образом, в процессе включения источника э.д.с нарастание силы тока в цепи задается функцией (18.3) и определяется кривой 2 на рис.19. Сила тока возрастает от начального значения I =0 и асимптотически стремится к установившемуся значению I o= E/ R. Скорость нарастания тока определяется тем же временем релаксации τ = L / R, что и убывание тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.

Контур, содержащий индуктивность, нельзя резко размыкать, так как возникновение при этом значительных э.д.с. самоиндукции может привести к пробою изоляции и выводу из строя электрических приборов.

Трансформаторы.

Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. Первые трансформаторы были сконструированы и введены в практику русским электротехником П.Н.Яблочковым (1847 – 1894) и русским физиком И.Ф.Усагиным (1855 – 1919). Принципиальная схема трансформатора показана на рис. 20.

Первичная и вторичная катушки (обмотки), имеющие соответственно n 1 и n 2 витков, укреплены на замкнутом железном сердечнике. Так как концы первичной обмотки присоединены к источнику переменного напряжения с э.д.с. E1, то в ней возникает переменный ток создающий в сердечнике трансформатора переменный магнитный поток Ф, который практически полностью локализован в

железном сердечнике и, следовательно, почти целиком

Рис.20.

пронизывает витки вторичной обмотки. Изменение этого потока вызывает во вторичной обмотке появление э.д.с. электромагнитной индукции, а в первичной – э.д.с. самоиндукции.

По закону Ома, ток I 1, первичной обмотки определяется алгебраической суммой внешней э.д.с. и э.д.с. самоиндукции: I 1 R 1=[Ei–d(n 1Ф)/d t ], где R 1 – сопротивление первичной обмотки. Падение напряжения I 1 R 1 на сопротивлении R 1, при быстропеременных полях мало по сравнению с каждой из двух э.д.с., поэтому E1» n 1dФ/d t.

Э.д.с. электромагнитной индукции, возникающая во вторичной обмотке,

E2= –[(d n 2Ф)/d t ] = – n 2(dФ/d t). (19.1)

Сравнивая выражения для E1 и E2, получим, что э.д.с., возникающая во вторичной обмотке,

E2= –(n 2/ n 1) E1, (19.2)

где знак минус показывает, что э.д.с. в первичной и вторичной обмотках противоположны по фазе. Отношение числа витков n 1/ n 2 показывающее, во сколько раз э.д.с. во вторичной обмотке трансформатора больше (или меньше), чем в первичной, называется коэффициентом трансформации.

Пренебрегая потерями энергии, которые в современных трансформаторах не превышают 2% и связаны в основном с выделением в обмотках джоулевой теплоты и появлением вихревых токов, и применяя закон сохранения энергии, можем записать, что мощности тока в обеих обмотках трансформатора практически одинаковы:

E2 I 2 ≈ E1 I 1, (19.3)

откуда, учитывая соотношение (19.2), найдем E2 /E1 = I 1/ I 2 = n 2/ n 1, т.е. токи в обмотках трансформатора обратно пропорциональны числу витков в этих обмотках.

Если n 2/ n 1>1, то имеем дело с повышающим трансформатором, увеличивающим переменную э.д.с. и понижающим ток (применяется, например, для передачи электроэнергии на большие расстояния, так как в данном случае потери на джоулеву теплоту, пропорциональные квадрату силы тока, снижаются). Если n 2/ n 1<1, то имеем дело с понижающим трансформатором, уменьшающим э.д.с. и повышающим ток (применяется, например, при электросварке, так как для нее требуется большой ток при низком напряжении).

Трансформаторы, используемые в радиотехнике, имеют 4–5 обмоток, обладающих разными рабочими напряжениями. Трансформатор, состоящий из одной обмотки, называется автотрансформатором. В случае повышающего автотрансформатора э.д.с. подводится к части обмотки, а вторичная э.д.с. снимается со всей обмотки. В понижающем автотрансформаторе напряжение сети подается на всю обмотку, а вторичная э.д.с. снимается с части обмотки.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: