1 Признак сравнения.
Даны два знакоположительных ряда
и
. Пусть, начиная с некоторого n, может быть и с n= 1, выполняется
, тогда:
а) если
сходится, то сходится и
;
б) если
расходится, то расходится и
.
Следствие: если существует
, конечное число, то ряды сходятся или расходятся одновременно.
Для использования этого признака удобно выбирать ряд, составленный из членов геометрической прогрессии
, который сходится при
и расходится при
, а также обобщенный гармонический ряд
, который сходится при
и расходится при
.
2 Признак Даламбера.
Пусть
и существует
. Тогда при q <1 ряд сходится, при q >1 – расходится, при q =1 – сомнительный случай (нужно исследовать с помощью других признаков).
3 Радикальный признак Коши.
Пусть
и существует
. Тогда при p <1 ряд сходится, при p >1 – расходится, при p =1 – сомнительный случай.
4 Интегральный признак Коши.
Дан знакоположительный ряд
| (1) |
Пусть
– непрерывная, положительная, монотонно убывающая функция, определенная при
и такова, что члены ряда являются значениями функции при
, т. е.
,
, …,
,…, тогда ряд (1) и несобственный интеграл
сходятся или расходятся одновременно.
План исследования знакоположительных рядов
1. Находим
. Если
, то ряд расходится, исследование закончено.
2. Если
, применяем один (подходящий) из достаточных признаков сходимости.
3. Делаем вывод о сходимости ряда.
Примеры.
1) 
Напоминаем, что
; 0!=1;
.
– ряд, расходящийся по признаку Даламбера.
2)
– ряд сходится по радикальному признаку Коши.
3)
сравним с
– сходящимся (как обобщенный гармонический
при k >1). Используем следствие из признака сравнения:
– конечное, не равное нулю число, тогда ряды ведут себя одинаково, т. е. сходятся.
Знакопеременные ряды
Это ряды, содержащие как положительные, так и отрицательные члены. Частным случаем таких рядов являются знакочередующиеся ряды: ряды, в которых за каждым положительным членом следует отрицательный и за каждым отрицательным членом следует положительный:

или
.
Признак Лейбница.
Если в знакочередующемся ряде
1) абсолютные величины членов ряда убывают
;
2)
,
то знакочередующийся ряд сходится и его сумма не превосходит модуля первого члена.
Следствие. Пусть знакочередующийся ряд сходится по признаку Лейбница. Если сумму этого ряда заменить суммой n первых членов, то погрешность, допускаемая при этом не превосходит модуля первого отброшенного члена.
Рассмотрим знакочередующийся ряд
и ряд, составленный из абсолютных его величин. Если ряд, составленный из абсолютных величин, сходится, то знакопеременный ряд называется абсолютно сходящимся рядом. Если знакопеременный ряд сходится, а ряд, составленный из абсолютных величин, расходится, то знакопеременный ряд называется условно сходящимся.
Пример. Исследовать на условную и абсолютную сходимость ряд.

Это знакочередующийся ряд. Применим признак Лейбница.
1)
;
2)
. => ряд сходится по признаку Лейбница.
Исследуем ряд на условную и абсолютную сходимость. Для этого рассмотрим ряд, составленный из абсолютных величин данного ряда.
– это обобщенный гармонический ряд, он сходится, так как k =3>1, тогда знакочередующийся ряд
является абсолютно сходящимся рядом.
Степенные ряды
Степенным рядом называется ряд вида:
,
где
– постоянные величины, коэффициенты ряда, число a – центр ряда.
При a =0 имеем
| (1) |
При
степенной ряд (1) принимает вид
| (2) |
Это уже числовой ряд. он может сходиться или расходиться.
Если ряд (2) сходится, то
– точка сходимости степенного ряда (1). Если ряд (2) расходится, то
– точка расходимости. Совокупность точек сходимости называется областью сходимости степенного ряда.
Теорема Абеля. Для любого степенного ряда (1) существует интервал
, внутри которого ряд сходится абсолютно, вне его расходится, а на границах может иметь различный характер сходимости.
– радиус интервала сходимости.
– интервал сходимости.
Если R =0, то точка x =0 – единственная точка сходимости.
Если R =¥, то ряд сходится на всей числовой оси.
Пример.
1) Найти радиус и интервал сходимости степенного ряда. Исследовать сходимость ряда на концах интервала.
.
Тогда (-5; 5) – интервал, внутри которого ряд сходится абсолютно. Исследуем характер сходимости ряда на границах.
1) x =–5, тогда степенной ряд примет вид
.
Это знакочередующийся ряд. Для него применим признак Лейбница:
1) 
– не выполнено первое условие признака Лейбница, тогда ряд
расходится, точка
– точка расходимости.
2) x =5;
– ряд расходится по следствию из необходимого признака, тогда x =5 – точка расходимости.
(-5; 5) – область сходимости данного степенного ряда.
2) 
.
– интервал сходимости данного степенного ряда. Исследуем на границах:
1)
, тогда степенной ряд примет вид:
– это знакочередующийся ряд. Проверим два условия:
1)
;
2)
, тогда ряд
сходится по признаку Лейбница, точка
– есть точка сходимости первоначального степенного ряда, она входит в область сходимости.
2)
. Сравним этот ряд с гармоническим
, который, как известно, расходится.
– конечное число, тогда по следствию из признака сравнения ряды ведут себя одинаково, т. е. оба расходятся, поэтому точка
– точка расходимости начального степенного ряда.
– область сходимости степенного ряда.
Теория вероятностей






