Тема 4. Функции двух переменных

Рассмотрим функцию двух переменных , определенную в некоторой области , являющейся частью плоскости Частной производной от функции по независимой переменной х называется производная

вычисленная при постоянном у.

Частной производной по у называется производная

вычисленная при постоянном х.

Для частных производных справедливы обычные правила и формулы дифференцирования.

При изменении и частные производные сами являются функциями, и можно вычислять частные производные от этих функций. Частные производные второго порядка обозначают следующим образом:

Последнюю из трех частных производных второго порядка называют смешанной производной. Если частные производные второго порядка непрерывны в точке , тогда , то есть не важно, в какой последовательности вычисляется смешанная производная.

Градиентом функции в точке называется вектор, составленный из частных производных:

Этот вектор указывает в точке М0 направление наискорейшего роста функции .

Для функции двух переменных вводится понятие производной по направлению, аналогичное понятию частной производной, когда приращение аргумента задается вдоль данного направления. Для любого направления, задаваемого вектором , производная функции в точке по направлению этого вектора может быть выражена следующим образом:

где знак модуля означает длину вектора градиента в точке , а ─ угол между градиентом и направлением .

Пример. Найти градиент функции в точке .

Решение. Рассматривая у как постоянную величину, дифференцируем функцию по переменной х.

.

Аналогично, рассматривая х как постоянную величину, получаем:

.

Находим значения частных производных в точке :

,

Таким образом,

Контрольные задания

Найти

       
   
 

градиент функции Z в точке М.

4.1 .

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

               
       

4.20

       
   


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: