Студопедия
МОТОСАФАРИ и МОТОТУРЫ АФРИКА !!!

Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Численные методы решения уравнения движения поезда




Для решения уравнения движения поезда с помощью ЭВМ используют численные методы интегрирования. Принципиально они аналогичны аналитическому и графическому методам. Различия состоят лишь в математической формализации зависимостей , и решении уравнения движения поезда.

Сущность численных методов заключается в замене нелинейного дифференциального уравнения движения поезда линейным дифференциальным, решение которого с достаточной для практики точностью приближается к решению нелинейного уравнения, то есть в линеаризации уравнения движения путём замены его линейным уравнением с постоянными коэффициентами. Основным допущением, как и в ранее рассмотренных методах, применяется принцип малых отклонений входящих в уравнение координат от тех значений, которые приняты в качестве исходных для линеаризации.

Известно много различных методов численного интегрирования дифференциальных уравнений: Л.Эйлера, Чаплыгина, Рунге – Кутта, Адамса и др. Академик А.Н. Крылов разделил приёмы нахождения приближённых решений дифференциальных уравнений на группы:

2. Разложение общего интеграла в ряды.

3. Применение способа последовательных приближений.

4. Приближённое численное интегрирование.

При выполнении тяговых расчётов, одним из методов численного интегрирования, достаточно найти частное решение, удовлетворяющее начальным условиям, в виде таблицы или графика кривой, представляющих решение уравнения движения поезда.

 





Дата добавления: 2017-10-25; просмотров: 615; Опубликованный материал нарушает авторские права? | Защита персональных данных


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 11093 - | 8255 - или читать все...

 

3.83.188.254 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.001 сек.