1. =
|
| 2. =
|
|
3. =
|
| 4. =
|
|
5. =
|
| 6. =
|
|
7. =
|
| 8. =
|
|
9. =
|
| 10. =
|
|
11. =
|
| 12. =
|
|
13. =
|
| 14. =
|
|
15. =
|
| 16. =
|
|
17. =
|
| 18. =
|
|
19. =
|
| 20. =
|
|
21. =
|
| 22. =
|
|
- «Определённый интеграл» необходимо использовать понятие определенного интеграла, формулу Ньютона-Лейбница для его вычисления, свойства определенного интеграла и методы интегрирования, а также использовать формулы интегрирования (см. выше).
- «Площадь криволинейной трапеции» необходимо использовать понятие определенного интеграла, формулу Ньютона-Лейбница для его вычисления, свойства определенного интеграла, а также использовать формулы интегрирования (см. выше), так же следует применять понятие определенного интеграла и его применение при вычислении площади криволинейной трапеции, учитывая случаи расположения фигуры в системе координат;
- «Геометрия» следует применять свойства геометрических фигур и тел, формулы вычисления площадей и объёмов геометрических фигур и тел.
Контрольная работа
Требования к оформлению контрольной работы
Контрольную работу следует выполнять в ученических тетрадях (желательно в клеточку). На обложке необходимо указать: название учебного заведения, название специальности, курс, номер группы, фамилию, имя, отчество и личный номер студента (который определяется по номеру в журнале группы). Условия задач переписывать не обязательно, достаточно указать номер задачи.
Повторение
Уравнения
Решить уравнения:
Вариант №1.
| Вариант №2.
| Вариант №3.
|
Вариант №4.
| Вариант №5.
| Вариант №6.
|
Вариант №7.
| Вариант №8.
| Вариант №9.
|
Вариант №10.
| Вариант №11.
| Вариант №12.
|
Неравенства
Решить неравенства:
Вариант №1.
| Вариант №2.
| Вариант №3.
|
Вариант №4.
| Вариант №5.
| Вариант №6.
|
Вариант №7.
| Вариант №8.
| Вариант №9.
|
Вариант №10.
| Вариант №11.
| Вариант №12.
|
Теория пределов
Пределы
Вычислить:
Вариант №1.
| Вариант №2.
| Вариант №3.
|
Вариант №4.
| Вариант №5.
| Вариант №6.
|
Вариант №7.
| Вариант №8.
| Вариант №9.
|
Вариант №10.
| Вариант №11.
| Вариант №12.
|
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=






