Гипербола

Определение 5. Гиперболой называется множество всех точек плоскости, модуль разности расстояний от каждой из которых до двух данных различных точек есть постоянная величина (рис. 6).

Данные точки называются фокусами и обозначаются F1 и F2. Данная постоянная величина обозначается 2. Если êF1F2 ê= 2с, то из свойств сторон треугольника F1F2М следует, что 2с > 2, т.е. с > . При изучении гиперболы нужно решить те же самые задачи, Рис. 6

которые мы ставили для эллипса.

· Выбрав какую-либо систему координат, вывести уравнение гиперболы.

· Используя полученное уравнение, исследовать форму и свойства гиперболы.

Для вывода уравнения гиперболы выберем такую же каноническую систему координат, какая была использована для эллипса (рис. 2). В этой системе координат F1(-с, 0), F2 (с, 0). Пусть М (х, у). Тогда r1 = êF1Мê = , r2 = êF2Мê= .

М Î гиперболе Û ú + ú = 2 а, или

+ = ± 2 а (4)

Уравнение (4) есть уравнение гиперболы. Упрощая его (проведите эти преобразования самостоятельно), получим

, где (5)

Так же как в случае эллипса можно показать, что уравнения (4) и (5) эквивалентны. Уравнение (5) называется каноническим уравнением гиперболы.

Исследуя уравнение (5), получаем следующие свойства гиперболы.

· , т.е. х £ - или х ³ . Следовательно, вся гипербола лежит вне полосы, ограниченной прямыми х = ± (рис.7). · Гипербола пересекает ось (ОХ) в точках А1(-,0), А2(,0). Отрезок А1А2 имеет длину 2и называется действительной Рис. 7

осью гиперболы. С осью (ОУ) гипербола не пересекается, но точки В1(0, -) и В2(0, ) называются мнимыми вершинами гиперболы. Отрезок В1В2 имеет длину 2и называется мнимой осью гиперболы.

· Гипербола симметрична относительно координатных осей и начала координат. Следовательно, форму гиперболы достаточно исследовать только в первом координатном углу.

Пусть х ³ 0, у ³ 0. Тогда из уравнения (5) получим . Это уравнение той ветви гиперболы, которая лежит в первом координатном углу. Сравним эту ветвь гиперболы с лучом , лежащим в том же углу. При одном и том же значении х будет угип. < улуче, т.е. ветвь гиперболы лежит между осью (ОХ) и лучом (рис. 8). Пусть М и N точки на гиперболе и на

луче соответственно с одной и той же абсциссой. Итак, точки гиперболы неограниченно приближаются к точкам луча. Используя симметрию относительно координатных осей, получим, что в остальных координатных углах гипербола неограниченно приближается к прямым (рис. 9). Рис. 8
Определение 6. Прямые, которые в канонической системе координат задаются уравнениями , называются асимптотами гиперболы. Величина e = называется эксцентриситетом гиперболы. Очевидно, e > 1. Рис. 9

Определение 7. Прямые, которые в канонической системе координат имеют уравнения называются директрисами гиперболы.

Теорема 4. Отношение расстояния от любой точки гиперболы до фокуса к расстоянию от этой же точки до соответствующей директрисы есть постоянная величина, равная эксцентриситету.

Доказательство этой теоремы аналогично доказательству теоремы 1.

Определение 8. Прямая называется касательной к гиперболе, если она имеет с гиперболой одну двукратную точку пересечения. Общая точка гиперболы и её касательной называется точкой касания.

Теорема 5. В любой точке гиперболы существует касательная к ней и только одна. Если гипербола задана уравнением (5) и точка касания М00, у0), то касательная имеет уравнение

.

Доказательство этой теоремы аналогично доказательству теоремы 2. Теорема 6. Если действительная ось гиперболы постоянна, то при e ® 1 гипербола стремится к паре лучей на оси (ОХ) с вершинами А1 и А2, если e ® ¥, то гипербола стремится к паре параллельных прямых х = ± а (рис. 10). Эта теорема доказывается аналогично теореме 3.     Рис. 10

Замечание 1.. Если при выводе уравнения гиперболы через фокусы направить ось (ОУ) и постоянную, о которой идёт речь в определении, обозначить 2, то будет а 2 = с2 -2 и уравнение гиперболы запишется (6).

Гиперболы, заданные уравнениями (5) и (6) называются сопряжёнными. Сопряжённые гиперболы имеют они и те же асимптоты (рис. 11). Фокусы гиперболы (6): , . Её эксцентриситет e = , директрисы у = . Рис. 11

Замечание 2. Если центром гиперболы является точка С(х0, у0) и действительная ось параллельна оси (ОХ), то уравнение гиперболы .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: