Краткая информация о физиологии водно-солевого обмена

Регуляция дыхания

 

Процесс дыхания регулируется центральной и периферической нервной системой. В ретикулярной формации головного мозга находится дыхательный центр, состоящий из центров вдоха, выдоха и пневмотаксиса.

Центральные хеморецепторы расположены в продолговатом мозге и возбуждаются при повышении концентрации Н+ и РСО2 в спинномозговой жидкости. В норме рН последней составляет 7,32, РСО2 - 50 мм.рт.ст., а содержание НСО3 - 24,5 ммоль/л. Даже небольшое снижение рН и рост РСО2 увеличивают вентиляцию легких.Сокращения дыхательных мышц контролирует центральный дыхательный механизм, состоящий из группы клеток продолговатого мозга, моста, а также пневмотаксических центров. Они тонизируют дыхательный центр и по импульсации из механорецепторов определяют порог возбуждения, при котором прекращается вдох. Пневмотаксические клетки также переключают вдох на выдох.

Периферические хеморецепторы, расположенные на внутренних оболочках сонного синуса, дуги аорты, левого предсердия, контролируют гуморальные параметры (РО2, РСО2 в артериальной крови и спинномозговой жидкости) и немедленно реагируют на изменения внутренней среды организма, меняя режим самостоятельного дыхания и, таким образом, корригируя рН, РО2 и РСО2 в артериальной крови и спинномозговой жидкости. Импульсы из хеморецепторов регулируют объем вентиляции, необходимый для поддержания определенного уровня метаболизма. Основная функция артериальных хеморецепторов - немедленная коррекция дыхания в ответ на изменения газового состава крови.

Периферические механорецепторы, локализующиеся в стенках альвеол, межреберных мышцах и диафрагме, реагируют на растяжение структур, в которых они находятся, на информацию о механических явлениях. Главную роль играют механорецепторы легких.Вдыхаемый воздух поступает по ВП к альвеолам и участвует в газообмене на уровне альвеолярно-капиллярной мембраны. По мере растяжения стенок альвеол во время вдоха механорецепторы возбуждаются и посылают афферентный сигнал в дыхательный центр, который тормозит вдох (рефлекс Геринга-Брейера).

При обычном дыхании межреберно-диафрагмальные механорецепторы не возбуждаются и имеют вспомогательное значение.

Система регуляции завершается нейронами, интегрирующими импульсы, которые поступают к ним от хеморецепторов, и посылающими импульсы возбуждения к дыхательным мотонейронам. Клетки бульбарного дыхательного центра посылают как возбуждающие, так и тормозящие импульсы к дыхательным мышцам. Координированное возбуждение респираторных мотонейронов приводит к синхронному сокращению дыхательных мышц.

Дыхательные движения, создающие воздушный поток, происходят благодаря согласованной работе всех дыхательных мышц. Нервные клетки двигательных

Нейронов дыхательных мышц расположены в передних рогах серого вещества спинного мозга (шейные и грудные сегменты).

У человека в регуляции дыхания принимает участие и кора большого мозга в пределах, допускаемых хеморецепторной регуляцией дыхания.

Биомеханика дыхания

Вентиляция легких происходит за счет периодических изменений работыдыхательных мышц, объема грудной полости и легких. Основными мышцами вдоха являются диафрагма и наружныемежреберныемышцы. Во время их сокращения происходят уплощение купола диафрагмы и приподнятие ребер кверху, в результате объем грудной клетки увеличивается, растет отрицательное внутриплевральное давление (Ppl). Перед началом вдоха (в конце выдоха) Ppl приблизительно составляет минус 3-5 см вод.ст. Альвеолярное давление (Palv) принимается за 0 (т. е. равно атмосферному), оно же отражает давление в дыхательных путях и коррелирует с внутригрудным давлением.


Градиент между альвеолярным и внутриплевральным давлением называется транспульмонарным давлением (Ptp). В конце выдоха оно составляет 3-5 см вод.ст.

Выдох в норме является процессом пассивным. После расслабления дыхательных мышц силы эластической тяги грудной клетки и легких вызывают удаление (выдавливание) газа из легких и восстановление первоначального объема легких. В случае нарушения проходимости трахеобронхиального дерева (воспалительный секрет, отек слизистой оболочки, бронхоспазм) процесс выдоха затруднен, и в акте дыхания начинают принимать участие также мышцы выдоха (внутренние межреберные мышцы, грудные мышцы, мышцы брюшного пресса и т. д.). При истощении экспираторных мышц процесс выдоха еще более затрудняется, происходит задержка выдыхаемой смеси и динамическоеперераздувание легких.

Таким образом, при спонтанном дыхании первична экскурсия грудной клетки, а газообмен в альвеолах – вторичен и является результатом этой экскурсии.


7. Таблица 1 – Виды гипоксий

Вид гипоксии Причины
Гипоксическая гипоксия Развивается вследствие низкой концентрации кислорода во вдыхаемой смеси, обструкции дыхательных путей, нарушения биомеханики дыхания, диффузионной блокады.
Гемическая гипоксия Следствие снижения кислородной ёмкости крови при анемии, блокаде гемоглобина при отравлениях.
Циркуляторная гипоксия Следствие тяжёлых нарушений кровообращения.
Гистотоксическая гипоксия Развивается при нарушениях утилизации кислорода при блокаде дыхательных ферментов.

 

8. В основе ОДН лежит остро развивающееся несоответствие уровня газообмена (внешнего дыхания) метаболическим потребностям организма.

Следует чётко определить что:
- ОДН - это синдром, являющийся следствием различных заболеваний, клинических (например, во время наркоза или эпидуральной анестезии) и неклинических (например - высокогорье) ситуаций.
- Следствием развития и прогрессирования ОДН является гипоксия - гипоксемия. В соответствии с классификацией гипоксий (таблица 1), ОДН является причиной гипоксической гипоксии.

(Сатишур О.Е. (2006)) Виды ОДН:





Центральная ОДН

Связана с угнетением, возбуждением либо дискоординацией работы дыхательного центра:


Угнетение дыхательного центра в результате действия лекарственных препаратов (опиоиды, снотворные, седативные и т. д.); нарушения мозгового кровообращения, тяжелой черепно-мозговой травмы, острых нейроинфекций, опухоли головного мозга, повреждения ствола головного мозга. Для тяжелой центральной ОДН, связанной с угнетением дыхательного центра, характерна клиническая триада: нарушение сознания, брадипноэ, тенденция к поверхностному дыханию и апноэ.

Перевозбуждение дыхательного центра (энцефалопатическая гипервентиляция) может развиться в результате черепно-мозговой травмы, отека мозга, повреждения гипоталамуса, хронической нейроинфекции и т. д. Энцефалопатическая гипервентиляция приводит к чрезмерной работе дыхательных мышц, вызывая их истощение, дыхательный алкалоз, гипокапнию и т. д.


Дискоординация дыхательного центра вызывает патологические ритмы дыхания и чаще всего является следствием вторичного метаболического поражения головного мозга. В качестве примеров можно назвать диабетические комы, энцефалопатию при эндогенной интоксикации (почечной или печеночной недостаточности) и т.д.

2.НейромышечнаяОДН Связана с нарушением передачи нервного импульса от дыхательного центра к респираторным мышцам либо с собственно патологией дыхательных мышц:

• Патология проведения импульса по нейропроводящей системе.

Возникает при травмах и заболеваниях спинного мозга (особенно шейного отдела) иотводящих нервов: травматическом пересечении, опухолях, ишемизации, воспалении бактериально-вирусной природы, боковом амиотрофическом склерозе. То же относится к периферическим отводящим нервам, связанным с дыхательными мышцами — травмы, демиелинизация, полиомиелит, полинейропатия (синдром Гийена-Барре). Особое место занимает повреждение п. phrenicus, иннервирующего диафрагму: развивающаяся вторичная слабость диафрагмы, как основной дыхательной мышцы, вызывает прогрессирующую нейромы-мышечную ОДН.

• Патология проведения импульса в нейромышечном соединении (синапсе). Развивается при аутоиммунном повреждении синаптическогомедиаторного проведения (миастения), интоксикационно-токсическом поражении синапса и медиаторов (ботулизм, столбняк, отравление ФОС) илиего медикаментозном угнетении (миорелаксанты).

• Патология сократимости дыхательных мышц. Самые различные причины способны привести к слабости собственно дыхательных мышц. К ним относятся различные неспецифические миопатии, миодистрофия, коллагенозы, общее истощение (кахексия). Тяжелые водно-электролитные нарушения(особенно гипокалиемия и гипомагниемия) атрофию дыхательных мышц, развивающуюся при длительной ИВЛ в случае применения глубокой седации и/или миорелаксантов, что значительно затрудняет последующее «отучение» от ИВЛ. Истощение дыхательных мышц вследствие большой работы дыхания также, на определенном этапе, усугубляет течение ОДН.


Центральную и нейромышечную ОДН еще принято относить к так называемой вентиляционной, или гипоксически-гиперкапнической дыхательной недостаточности. Этим самым подчеркивается нарушение самого механического процесса внешней вентиляции. При этих формах быстро развивается выраженная альвеолярная гиповентиляция, резко снижается минутный объем дыхания, поэтому гипоксемия и гиперкапния прогрессируют одновременно, что характерно именно для вентиляционной ОДН. Выраженная вентиляционная ОДН является прямым показанием к экстренной ИВЛ (!) еще до выяснения причин ОДН и начала специфической терапии (если исключен напряженный пневмоторакс).


3.Торакодиафрагмальная ОДН
Связана с нарушением целостности каркаса грудной клетки, повреждением диафрагмы, острым нарушением распределения дыхательной смеси при сдавлении или коллабировании легкого, а также с болевым синдромом и высоким стоянием купола диафрагмы:

Нарушение целостности и подвижности грудного каркаса. Возникает при множественных переломах ребер, грудины, травматическом разрыве диафрагмы. Механизм развития ОДН при этом связан с несколькими факторами. Во-первых, значительно затруднено создание необходимого отрицательного давления в плевральной полости. Данное обстоятельство обусловлено излишней парадоксальной подвижностью поврежденных ребер и/или грудины, недостаточной жесткостью грудной стенки как опоры париетальной плевры. Во-вторых, мощный болевой фактор искусственно ограничивает необходимое расправление грудной клетки. В-третьих, травматическое повреждение диафрагмы переносит основную работу по внешней вентиляции на межреберные мышцы, которые не всегда справляются с повышенной нагрузкой.

Сдавление и/или коллабирование легочной ткани. Развивается при открытом или напряженном (клапанном) пневмотораксе, прогрессирующем гидротораксе и гемотораксе. С точки зрения выраженности ОДН наиболее опасен напряженный (клапанный) пневмоторакс, при котором с каждым вдохом в плевральной полости накапливается все больше воздуха, растет внутриплевральное положительное давление, полностью коллабируется легкое на стороне поражения, средостение смещается в здоровую сторону, затем наступает сдавление сердца и крупных сосудов и развивается гемодинамическая несостоятельность вплоть до остановки сердечной деятельности. Даже подозрение на развитие клапанного пневмоторакса является показанием к немедленному дренированию плевральной полости. До дренирования ИВЛ начинать нельзя, так как она может усугубить сдавление органов средостения вследствие принудительного поступления дыхательной смеси в плевральную полость на стороне поражения и еще большему сдавлению легких и сердца.

Высокое стояние купола диафрагмы. Имеет место при ожирении, парезе кишечника, асците. Экскурсии диафрагмы значительно ограничиваются, происходят нарушение расправления легочной ткани, уменьшение газообменной зоны легких, ателектазирование, развивается гипоксемия.

Особой разновидностью торакодиафрагмальной ОДН является ограничение подвижности грудной клетки, связанное с мощным болевым фактором (ранний послеоперационный период после вмешательства на органах грудной или брюшной полости, перелом ребер и т. д). В случае некупированного болевого синдрома резко сокращается амплитуда экскурсий грудной клетки, что способствует развитию недостаточной альвеолярной вентиляции, ателектазированию, гипоксемии, нарушению элиминации СО2 и т.д.








Обструктивная ОДН

Как следует из названия, обструктивная ОДН связана с острым нарушением проходимости дыхательных путей на том или ином уровне. Это один из наиболее часто встречающихся и в то же время самых опасных видов ОДН. Самые различные причины могут привести к обструкции верхних или нижних дыхательных путей:
• западение корня языка, блокада гортани желудочным содержимым, наличие инородного тела в области гортани (трахеи), главных бронхов, гематома, опухоль и т. д.;

• травматическая обструкция верхних дыхательных путей;

• воспалительный отек голосовых связок, подсвязочный ларингит, скопление мокроты, воспалительного секрета при нарушении дренажной функции бронхов (блокада кашлевого рефлекса, повреждение системы мукоцилиарного очищения);

• острый бронхоспазм и бронхорея, отек слизистой оболочки крупных бронхов при бронхиальной астме или обострении ХОЗЛ;

• раннее экспираторное закрытие мелких дыхательных путей.

высокое сопротивление дыхательных путей увеличивает работу дыхания, его энергетическую и кислородную цену, что приводит к истощению компенсаторных механизмов — возникает опасная гипоксемия, к которой затем присоединяется гиперкапния.


Рестриктивная ОДН

Связана с тяжелым и острым нарушением растяжимости (податливости) легочной ткани, ателектазированием, блокадой альвеолокапиллярной мембраны. К основным этиологическим причинам рестриктивной ОДН можно отнести:

• полисегментарная пневмония; фиброзные процессы в результате хронического неспецифического воспалительного процесса в легких; необтурационные ателектазы;

• респираторный дистресс-синдром взрослых ОРДС (РДСВ), синдром Мендельсона;

• кардиогенный и некардиогенный отек легких;

• тяжелыегестозы (эклампсия, HELLP—синдром и т. д.).
В основе выраженного ухудшения растяжимости легких лежит целый комплекс причин: воспалительный процесс легочной ткани, альвеолярный коллапс вследствие недостаточности сурфактанта, интерстициальный отек. Коллапс альвеол приводит к развитию множественных ателектазов, при этом вследствие преимущественного нарушения вентиляции снижается вентиляционно-перфузионный коэффициент.
Наиболее тяжело рестриктивная ОДН протекает при РДСВ (ОРДС).

На определенном этапе патологического процесса аппарат внешней вентиляции не справляется с высокой нагрузкой и наступает декомпенсация с опасной для жизни гипоксической гипоксией.



Перфузионная ОДН

Связана с ограничением кровотока по ветвям легочной артерии и увеличением физиологического мертвого пространства. Основными причинами являются:

• тромбоэмболия ветвей легочной артерии (ТЭЛА);

• выраженная гиповолемия (кровопотеря, дегидратация).

При перфузионной ОДН происходит резкое снижение перфузируемых зон легких по отношению к вентилируемым (вентиляционно-перфузионный коэффициент >1, увеличивается физиологическое мертвое пространство, сокращается площадь реального газообмена. Как итог, прогрессирует гипоксемия и гипоксия, которые невозможно компенсировать развивающимся тахипноэ. Для ТЭЛА, кроме того, характерны выраженные гемодинамические нарушения и явления правожелудочковой недостаточности, что усугубляет ситуацию.

Торакодиафрагмальную, обструктивную, рестриктивную и перфузионную ОДН в литературе часто объединяют в паренхиматозную, или газообменную (гипоксемическую) ОДН. При паренхиматозной ОДН на первый план выходит прогрессирующая гипоксемия, которая нередко устойчива к кислородотерапии. Уровень РаС02 может длительное время сохраняться в пределах нормы за счет компенсаторных механизмов внешней вентиляции, гиперкарбия развивается уже на поздних стадиях заболевания при развитии декомпенсации.

5. Клинические показания к ИВЛ

• Апноэ или брадипноэ (< 10 в минуту).

• Тахипноэ> 30 в минуту.

• Гипоксическое нарушение или угнетение сознания.

• Поверхностное дыхание, аускультативное распространение зон «немых легких» у пациентов с тяжелой рестриктивной или обструктивной патологией (например, астматический статус).

• Избыточная работа дыхания, истощение (усталость) основных и вспомогательных дыхательных мышц.

• Прогрессирующий цианоз и влажность кожных покровов.

• Кома любого генеза с нарушением глотательного и кашлевого рефлекса.

• Тяжелый шок, нестабильность гемодинамики.

• Черепно-мозговая травма с признаками нарушения дыхания или сознания.

• При тяжелой травме грудной клетки и легких.

• Повторяющийся судорожный синдром, требующий введения миорелаксантов или больших доз седативных препаратов.

• Прогрессирующая тахикардия гипоксического генеза.

• Прогрессирующий альвеолярный отек легких.

• Остановка эффективной сердечной деятельности.

6. Лабораторно-инструментальные показания к ИВЛ

• Прогрессирующая гипоксемия, рефрактерная к кислородотерапии.

• РаО2< 60 мм рт.ст. (< 65 мм рт.ст. при потоке кислорода более 5 л/минуту).

• SaО2< 90 %.

• РаСО2> 55 мм рт.ст. (у больных ХОЗЛ > 65 мм рт.ст.).

• ЖЕЛ < 15 мл/кг.

9. Кровообращение - это непрерывное движение (обращение) крови по замкнутой системе, именуемой сердечно-сосудистой.

Основными задачами (функция) кровообращения являются:

1. Доставка тканям: кислорода, питательных веществ и солей, гормонов и других активных веществ;

2. Удаление из тканей: углекислоты и прочих конечных продуктов метаболизма;

3. Участие в теплоотдаче.

10. Классификация

Из всех предложенных классификаций сердечно-сосудистой системы (ССС) наиболее практичной оказалась классификация Б.Фолкова (1976 г.), которую В.Туркин и В.Чурсин (2003 г.) модифицировали, добавив 8-ой элемент - объем циркулирующей крови (ОЦК):


- 1-м элементом является сердце, которое представляется как насос;


- 2 - аорта и крупныеартерии, имеют много эластических волокон, представляются как буферные сосуды, благодаря им резко пульсирующийкровопоток превращается в более плавный;


- 3 - прекапиллярные сосуды, это мелкие артерии, артериолы, метартериолы, прекапиллярные жомы (сфинктеры), имеют много мышечныхволокон, которые могут существенно изменить свой диаметр (просвет), они определяют не только величину сосудистого сопротивления в малом и большом кругах кровообращения (поэтому и называются резистивными сосудами), но и распределение кровопотока;


- 4 - капилляры, это обменныесосуды, при обычном состоянии открыто 20-35% капилляров, они образуют обменную поверхность в 250-350 кв.м., при физической нагрузке максимальное количество открытых капилляров может достигать 50-60%;


- 5 - сосуды - шунты или артериоло-венулярные анастомозы, обеспечивают сброс крови из артериального резервуара в венозный, минуя капилляры, имеют значение в сохранении тепла в организме;


- 6 - посткапиллярныесосуды, это собирательные и отводящиевенулы; в

некоторых источниках литературы их именуют посткапиллярными жомами

(сфинктерами);


- 7 - вены, крупныевены, они обладают большойрастяжимостью и малойэластичностью, в них содержится большая часть крови (поэтому и называются емкостнымисосудами), они определяют "венозный возврат" крови к желудочкам сердца, их заполнение и (в определенной мере) ударный объём (УО).


- 8 – объем циркулирующей крови (ОЦК) – совокупность содержимого всех сосудов.

17. (ОЦК) – совокупность содержимого всех сосудов. определяет наполнение камер сердца и таким образом влияет на величину УО.

По классическому представлению ОЦК составляет у мужчин 77 и у женщин 65 мл/кг массы тела ±10%. В среднем берётся 70 мл/кг.ОЦК является «жидким слепком сосудистой системы» - сосуды не бывают полупустыми. Депо ОЦК в организме является интерстициальное пространство, резервная-мобильная емкость которого составляет примерно ещё 1 литр. При патологии интерстиций способен принять около 5-7 литров жидкости без формирования внешне видимых отеков (А.Д.Ташенов, В.В.Чурсин, 2009г.).

Причины гиповолемии: кровопотеря, прием лекарственных препаратов (диуретики), нарушения регуляции водно-солевого баланса, диспептическое расстройство (неперывная рвота, панос), шок (любого генеза), токсикоинфекция, патологическая полиурия, надпочечникова недостаточность, перитонит, хроническая сердечная недостаточность и тд

Причины гиперволемии: гиперинфузия (при быстрой инфузии, особенно крупномолекулярных растворов (декстраны, ГЭК, СЗП, альбумин), нарушения регуляции водно-солевого баланса, заболевания почек (почечная недостаточность, преренальная и ренальная), избыточное поступление в организм жидкости при патологической жажде (СД), гиперпродукция АДГ, гиперосмолярность плазмы крови, хроническая гипоксия любого типа (гемическая, дыхательная, циркуляторная и тканевая и др), чрезмерное питье солевых растворов.









СЛР

1.Определение СЛР - это комплекс неотложных мероприятий при остановке кровообращения и дыхания, направленных на поддержание жизнедеятельности ГМ и восстановление спонтанного кровообращения и дыхания.

Показания к СЛР: отсутствие пульса, дыхания и сознания.

Противопоказания к СЛР: травмы несовместимы с жизнью, явные признаки биологической смерти, нотариально заверенный отказ, прогрессирующее неизлечимое хроническое заболевание, опасная обстановка (временный отказ).

Осложнения СЛР в результате: перемещения пациента, обеспечения проходимости ВДП, компрессий, проведения ИВЛ, сосудистого доступа, применения медикаментов.

2.2 препарата по АНА/ER -Амиодарон (кордарон). Антиаритмический препарат III класса, увеличивает продолжительность потенциала действия. Помимо антиаритмического, амиодарон оказывает ещё бета–блокирующее и вазодилятирующее действие, вводят в/в быстро в дозе 300 мг в 10 мл 5% раствора глюкозы, после чего в течении 2 мин проводят массаж сердца и ИВЛ, а затем выполняют дефибрилляцию. При сохраняющейся после проведения реанимационных мероприятий электрической нестабильности миокарда показано постоянное в/в введение препарата в суточной дозе 1200 мг.

-Адреналин (эпинефрин) способствует восстановлению самостоятельного кровообращения при остановке сердца длительностью более чем 1–2 мин независимо от электрокардиографической картины.Во время СЛР адреналин следует вводить в/в в дозе 1 мг каждые 3–5 мин. Оптимальная доза для эндотрахеального введения неизвестна, но она должна быть в 2–2,5 раза выше (в 10 мл изотонического раствора), чем для в/в введения.

ДЕФИБРИЛЛЯЦИЯ

1.Определение Дефибрилляция - воздействие высоковольтного кратковременного несинхронизированного с зубцом R на ЭКГ электрического разряда постоянного тока достаточной силы, с целью вызвать деполяризацию всего миокарда, после чего синоатриальный узел (водитель ритма первого порядка) возобновляет контроль над сердечным ритмом.

Показания к ДФ: крупноволновая (крупноамплитудная ФЖ).

Осложнения ДФ:

-Постконверсионные аритмии,

-ТЭЛА (чаще развиваются у больных с тромбоэндокардитом)

-Ожоги кожи,

-Нарушения дыхания и аспирационная пневмония,

-Артериальная гипотензия (редко и недолго),

-Отек легких возникает редко,

-Изменения реполяризации на ЭКГ

-Повышения активности ферментов (АСТ, ЛДГ, КФК).

Техника безопасности:

- Запрещается пользоваться аппаратом, имеющим механические повреждения корпуса, электродов или кабелей

         - Запрещается производить разряд при короткозамкнутых электродах

-Запрещается прикасаться к пациенту в момент дефибрилляции. Проводящий ДФ голосом командует всем отойти.

-Все приборы, не обеспечивающие изоляцию (не маркированные), пациента должны быть отключены

-К работе с аппаратом должен допускаться персонал, изучивший правила по технике безопасности при работе на электроустановках и с электронными медицинскими приборами

-Кислород удален от пациента.

-Металл (нр. ювелирные украшения) и трансдермальные пластыри и гели (особенно с нитроглицерином) должны быть удалены

2. После 1 – го разряда, не определяя ритм и пульс продолжать СЛР в течение 2 мин, т.к. при длительной фибрилляции желудочков при эффективном 1 разряде пульс после него определяется редко т.е. важно восстановить гемодинамически эффективный ритм.

Если 2 – ой разряд оказался не эффективным (не определяется ритм), то проводят непрямой массаж в течении 2 мин, затем дефибриляция в тех же режимах.

Если 2 – аядефибрилляция оказалась не эффективна, то через 2 мин непрямого массажа сердца вводят в/в 1 мг адреналина и сразу наносят 3 - й разряд той же мощностью, и проведения непрямого массажа сердца в течение 2 мин. затем контроль ритма.

Если фибрилляция желудочков продолжается, то после 3 – го разряда в/в быстро вводят амиодарон 300 мг, и после оценки ритма сразу проводят 4 – ю дефибрилляцию разрядом той же мощности. (Если нет амиодарона - то можно использовать лидокаин в дозе 1мг/кг веса, через 5 мин 0,5- 0,7 мг/кг до 3 мг/кг) После 4 – го разряда 2 мин проводится СЛР, затем контроль ритма, во время которого можно ввести 1 мг адреналина. Итого: за 9 минут 4 разряда и комплекс СЛР.

Центральное венозное давление — давление крови в правом предсердии. Измеряется при помощи вводимого катетера, в котором имеется передатчик. Является важной диагностической информацией при различных серьёзных заболеваниях сердца и легких. Уровень центрального венозного давления (ЦВД), то есть давления в правом предсердии, оказывает су­щественное влияние на величину венозного возврата крови к серд­цу. При понижении давления в правом предсердии от 0 до −4 мм рт.ст. приток венозной крови возрастает на 20-30 %, но когда дав­ление в нем становится ниже −4 мм рт.ст., дальнейшее снижение давления не вызывает уже увеличения притока венозной крови. Это отсутствие влияния сильного отрицательного давления в правом предсердии на величину притока венозной крови объясняется тем, что в случае, когда давление крови в венах становится резко от­рицательным, возникает спадение вен, впадающих в грудную клетку. Если снижение ЦВД увеличивает приток венозной крови к сердцу по полым венам, то его повышение на 1 мм рт.ст. снижает веноз­ный возврат на 14 %. Следовательно, повышение давления в правом предсердии до 7 мм рт.ст. должно снизить приток венозной крови к сердцу до нуля, что привело бы к катастрофическим нарушениям гемодинамики.
Однако в исследованиях, в которых сердечно-сосудистые рефлек­сы функционировали, а давление в правом предсердии повышалось медленно, приток венозной крови к сердцу продолжался и при повышении давления в правом предсердии до 12- 14 мм рт.ст.
На основании зависимости величин минутного объема сердца и развиваемой им полезной мощности от давления в правом предсер­дии, обусловленного изменением венозного притока, сделан вывод о существовании минимального и максимального пределов изменений ЦВД, ограничивающих область устойчивой работы сердца. Минимальное допустимое среднее давление в правом предсердии состав­ляет 5-10, а Максимальное — 100—120 мм вод.ст., При выходе за эти пределы ЦВД зависимость энергии сокращения сердца от ве­личины притока крови не наблюдается из- за необратимого ухудше­ния функционального состояния миокарда.
Средняя величина ЦВД у здоровых людей составляет в условиях мышечного покоя от 40 до 120 мм вод.ст. и в течение дня меня­ется, нарастая днем и особенно к вечеру на 10-30 мм вод.ст., что связано с ходьбой и мышечными движениями. В условиях постель­ного режима суточные изменения ЦВД отмечаются редко. Увеличе­ниевнутриплеврального давления, сопровождаемое сокращением мышц брюшной полости (кашель, натуживание), приводит к крат­ковременному резкому возрастанию ЦВД до величин, превосходящих значение 100 мм рт.ст., а задержка дыхания на вдохе — к его временному падению до отрицательных величин.
При вдохе ЦВД уменьшается за счет падения плеврального дав­ления, что вызывает дополнительное растяжение правого предсердия и более полное заполнение его кровью. При этом возрастает ско­рость венозного кровотока и увеличивается градиент давления в венах, что приводит к дополнительному падению ЦВД. Так как давление в венах, лежащих вблизи грудной полости (например, в яремных венах) в момент вдоха является отрицательным, их ранение опасно для жизни, поскольку при вдохе в этом случае возможно проникновение воздуха в вены, пузырьки которого, разносясь с кровью, могут закупорить кровеносное русло (развитие воздушной эмболии).
При выдохе ЦВД растет, а венозный возврат крови к сердцу уменьшается. Это является результатом повышения плеврального давления, увеличивающего венозное сопротивление вследствие спадения грудных вен и сдавливающего правое предсердие, что затруд­няет его кровенаполнение.
Оценка состояния венозного возврата по величине ЦВД имеет также значение при клиническом использовании искусственного кровообращения. Роль этого показателя в ходе перфузии сердца велика, так как ЦВД тонко реагирует на различные нарушения оттока крови, являясь, таким образом, одним из критериев контроля адекватности перфузии.

Центральное венозное давление — давление крови в правом предсердии. Измеряется при помощи вводимого катетера, в котором имеется передатчик. Является важной диагностической информацией при различных серьёзных заболеваниях сердца и легких. Уровень центрального венозного давления (ЦВД), то есть давления в правом предсердии, оказывает су­щественное влияние на величину венозного возврата крови к серд­цу. При понижении давления в правом предсердии от 0 до −4 мм рт.ст. приток венозной крови возрастает на 20-30 %, но когда дав­ление в нем становится ниже −4 мм рт.ст., дальнейшее снижение давления не вызывает уже увеличения притока венозной крови. Это отсутствие влияния сильного отрицательного давления в правом предсердии на величину притока венозной крови объясняется тем, что в случае, когда давление крови в венах становится резко от­рицательным, возникает спадение вен, впадающих в грудную клетку. Если снижение ЦВД увеличивает приток венозной крови к сердцу по полым венам, то его повышение на 1 мм рт.ст. снижает веноз­ный возврат на 14 %. Следовательно, повышение давления в правом предсердии до 7 мм рт.ст. должно снизить приток венозной крови к сердцу до нуля, что привело бы к катастрофическим нарушениям гемодинамики.
Однако в исследованиях, в которых сердечно-сосудистые рефлек­сы функционировали, а давление в правом предсердии повышалось медленно, приток венозной крови к сердцу продолжался и при повышении давления в правом предсердии до 12- 14 мм рт.ст.
На основании зависимости величин минутного объема сердца и развиваемой им полезной мощности от давления в правом предсер­дии, обусловленного изменением венозного притока, сделан вывод о существовании минимального и максимального пределов изменений ЦВД, ограничивающих область устойчивой работы сердца. Минимальное допустимое среднее давление в правом предсердии состав­ляет 5-10, а Максимальное — 100—120 мм вод.ст., При выходе за эти пределы ЦВД зависимость энергии сокращения сердца от ве­личины притока крови не наблюдается из- за необратимого ухудше­ния функционального состояния миокарда.
Средняя величина ЦВД у здоровых людей составляет в условиях мышечного покоя от 40 до 120 мм вод.ст. и в течение дня меня­ется, нарастая днем и особенно к вечеру на 10-30 мм вод.ст., что связано с ходьбой и мышечными движениями. В условиях постель­ного режима суточные изменения ЦВД отмечаются редко. Увеличе­ниевнутриплеврального давления, сопровождаемое сокращением мышц брюшной полости (кашель, натуживание), приводит к крат­ковременному резкому возрастанию ЦВД до величин, превосходящих значение 100 мм рт.ст., а задержка дыхания на вдохе — к его временному падению до отрицательных величин.
При вдохе ЦВД уменьшается за счет падения плеврального дав­ления, что вызывает дополнительное растяжение правого предсердия и более полное заполнение его кровью. При этом возрастает ско­рость венозного кровотока и увеличивается градиент давления в венах, что приводит к дополнительному падению ЦВД. Так как давление в венах, лежащих вблизи грудной полости (например, в яремных венах) в момент вдоха является отрицательным, их ранение опасно для жизни, поскольку при вдохе в этом случае возможно проникновение воздуха в вены, пузырьки которого, разносясь с кровью, могут закупорить кровеносное русло (развитие воздушной эмболии).

При выдохе ЦВД растет, а венозный возврат крови к сердцу уменьшается. Это является результатом повышения плеврального давления, увеличивающего венозное сопротивление вследствие спадения грудных вен и сдавливающего правое предсердие, что затруд­няет его кровенаполнение.

Оценка состояния венозного возврата по величине ЦВД имеет также значение при клиническом использовании искусственного кровообращения. Роль этого показателя в ходе перфузии сердца велика, так как ЦВД тонко реагирует на различные нарушения оттока крови, являясь, таким образом, одним из критериев контроля адекватности перфузии.











Краткая информация о физиологии водно-солевого обмена

1. Вода организма
В норме у взрослого человека на долю воды приходится около 60% массы тела. Оставшиеся 40% массы тела составляет сухой остаток, который содержит белки 18%, жиры 16%, углеводы 1% и минеральные соли 5%.
Вода является, универсальным биологическим растворителем и только в водной среде могут протекать все сложнейшие биохимические процессы в живом организме. Вода выполняет транспортную функцию, являясь переносчиком различных веществ по всему организму, а также участвуя в выведении из организма во внешнюю среду конечных продуктов обмена веществ. Кроме того, вода является основным пластическим материалом и принимает активное участие в терморегуляции.

Общее количество воды в организме человека колеблется в пределах 50-83% массы тела и зависит от таких факторов как возраст, пол и степень упитанности. Наибольшее количество воды содержится в организме новорождённых – до 83% массы тела. С возрастом её процентное содержание постепенно уменьшается, достигая у мужчин около 60%, а у женщин около 50% массы тела. В пожилом и старческом возрасте общее количество воды составляет лишь 40-45% массы тела.

Вся вода, содержащаяся в организме, распределяется по двум водным секторам, между которыми при нормальных условиях устанавливается строгое динамическое равновесие. В среднем 2/3 её объёма (около 40% массы тела) находятся в клетках, а остальное количество во внеклеточном пространстве.

Клеточная жидкость является основной частью цитоплазмы и по своему электролитному составу значительно отличается от внеклеточной воды.

Рисунок 1 - Схема распределения воды в организме.


На рисунке 1 представлена общая схема распределения воды в организме.

Внутриклеточный сектор, вода которого составляет примерно 30-40% массы тела (около 28 л у мужчин при массе 70 кг), и внеклеточный - примерно 20% массы тела (около 14 л). Внеклеточный объем воды распределяется между интерстициальной водой (15-16% массы тела, или 10,5 л), в которую входит также вода связок хрящей, плазмой (около 4-5%, или 2,8 л), лимфой и трансцеллюлярной водой (цереброспинальная и внутрисуставная жидкости, содержимое желудочно-кишечного тракта), не принимающей активного участия в метаболических процессах.

Физиология рассматривает три фактора, определяющих целенаправленное движение воды при транскапиллярном обмене:

1. Осмотическое состояние биологических жидкостей.

Осмосом называют спонтанное движение растворителя из раствора с низкой концентрацией частиц в раствор с высокой концентрацией через мембрану, проницаемую только для растворителя. Осмотическое давление - избыточная величина гидростатического давления, которое должно быть приложено к раствору, чтобы уравновесить диффузию растворителя, через полупроницаемую мембрану.

Осмотическое давление плазмы крови составляет в среднем 6,62 атм (пределы колебаний 6,47-6,72 атм). Осмотическое давление зависит только от концентрации частиц, растворенных в растворе, и не зависит от их массы, размера и валентности. Таким образом, осмотическое давление создают в растворе все частицы - как ионы, так и нейтральные молекулы (глюкоза, мочевина)

2. Часть осмотического давления, создаваемую в биологических жидкостях белками, называют коллоидно-осмотическим (онкотическим) давлением (КОД).

Оно составляет примерно 0,7% осмотического давления (или осмотической концентрации), т. е. около 25 мм рт. ст. (2 мосмоль/кг), но имеет исключительно большое функциональное значение в связи с высокой гидрофильностью белков и неспособностью их свободно проходить через полупроницаемые биологические мембраны.

Величина коллоидно-осмотического давления зависит, в основном, от количества общего белка плазмы (на 80% определяется концентрацией альбумина) и составляет в среднем 25 мм.рт.ст.
КОД=(общий белок г/л*0,4)-0,8

Для беременных – КОД = (общий белок г/л*0,521)-11,4

3. Одновременно на капиллярную стенку воздействует и другая сила – гидростатическое (точнее – гидродинамическое) давление, создаваемое самой массой крови за счёт энергии сердца. Оно направлено на то, чтобы вытолкнуть воду из капилляров в межклеточное пространство. В отличие от онкотического давления величина гидростатического давления в капиллярах непостоянна. В артериальном колене капилляра она составляет в среднем 32,5 мм.рт.ст., а в венозном – 17,5 мм.рт.ст.. Вследствие градиента давлений (в среднем 9 мм рт.ст.) из артериального колена капилляра жидкость с растворёнными в ней электролитами диффундирует в межклеточное пространство. С другой стороны, в венозном колене капилляра, благодаря градиенту в пользу онкотического давления, вода из межклеточного сектора начинает поступать в кровеносное русло.
Величина обмена тканевой жидкости более чем в 40 раз превышает объём кровотока. Более 200 л жидкости в минуту циркулирует в пределах сосудистого тканевого сектора, вызывая постоянное обновление окружающей ткани среды. В течение суток примерно 20 л жидкости покидает сосудистое русло через артериальное колено капилляров и столько же возвращается назад – 18 л через венозное колено капилляров и 2 л дренируются лимфатической системой.






Причины отеков

1) В случае снижения коллоидно-онкотического давления плазмы (гипопротеинемия) даже при нормальном венозном давлении нарушается резорбция жидкости в сосудистое русло, что проявляется отёками (безбелковыми, голодными).

2) Отёки возникают и при сердечной недостаточности, когда повышается венозное давление, способное «побороть» даже нормальное коллоидно-онкотическое давление плазмы.

3) Ещё один механизм образования отёков формируется при синдроме капиллярной утечки – за счёт повышения проницаемости капиллярной стенки в интерстиций проникает много белка. В результате этого повышается коллоидно-онкотическое давление интерстиция при уменьшенном коллоидно-онкотическом давлении плазмы.


Исходя из знаний этих механизмов образования отёков, можно сделать клинически важный вывод – нелогично, малоэффективно, а иногда и опасно применять мочегонные для устранения отёков. Мочегонные оправданы только в случае нарушений функции почек, в остальных клинических ситуациях необходимо устранять патогенетическую причину их образования – повышать уровень белка или лечить сердечную недостаточность или устранять причину синдрома капиллярной утечки.


Необходимо помнить о важной роли в постоянстве интерстициального объема жидкости лимфодренажной системы, постоянно сбрасывающей в вену небольшой избыток жидкости и белка.




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: