Уравнение прямой по точке и вектору нормали

Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В) перпендикулярен прямой, заданной уравнением Ах + Ву + С = 0. Пример. Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1). Составим при А = 3 и В = -1 уравнение прямой: 3х – у + С = 0. Для нахождения коэффициента С подставим в полученное выражение координаты заданной точки А. Получаем: 3 – 2 + C = 0, следовательно С = -1. Итого: искомое уравнение: 3х – у – 1 = 0. Уравнение прямой, проходящей через две точки. Пусть в пространстве заданы две точки M1(x1, y1, z1) и M2(x2, y2, z2), тогда уравнение прямой, проходящей через эти точки: Если какой- либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На плоскости записанное выше уравнение прямой упрощается: если х1 ¹ х2 и х = х1, еслих1 = х2. Дробь = k называется угловым коэффициентом прямой.

Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4). Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту. Если общее уравнение прямой Ах + Ву + С = 0 привести к виду: и обозначить , то полученное уравнение называется уравнением прямой с угловым коэффициентом k.

Вопрос 2: Определение производной. Геометрический и экономический смысл:

Определение: Рассмотрим y=f(x): производной функцией в фиксированной точке называется lim отношения приращения этой функцией в данной точке к бесконечно малому приращению аргумента.

(y’; ; )

 

Рассмотрим приращение функции y=f(x). Зафиксируем x=x0

 

Геометрический смысл производной состоит в том, что производная вычисляет в абсциссе точку касания, численно равную k.

y’= =k

Экономический смысл производной: производная в экономическом смысле характеризует приближенно дополнительные затраты на производство единицы дополнительной продукции.

Билет 10:

Вопрос 1: Условие параллельности и перпендикулярности прямых на плоскости:

Из общего уравнения прямой на плоскости Оху Ax+By+C=0 получаем частные случаи, из двух таких случаев:

1). A 0, B=0. Ax+C=0, или x=a, a= : эта прямая параллельна оси Оу и отсекает на оси Ох отрезок, имеющий величину а. При С=0 прямая совпадает с осью Оу

2). А=0, В 0. Ву+С=О, параллельна оси Ох, или у=b, b= , где b – величина отрезка, отсекаемого прямой на оси Оу.

Следуют признаки параллельности и перпендикулярности прямых:

A1A2+B1B2=0

 

Если прямые заданны в форме у=kx+b с угловыми коэффициентами k1 и k2 , то угол между ними вычисляется по формуле:

В этом случае условие параллельности прямых на плоскости будет k1=k2, а перпендикулярности k1= .

 

Вопрос 2: Уравнение касательной и нормали:

Уравнение касательной:

Уравнение нормали:

Уравнение нормали к поверхности F(x;y;z)=0 в точке M0(x0;y0;z0) имеет вид:

Билет 11:

Вопрос 1: Каноническое уравнение прямой в пространстве:

Замечание 1: Эта компактная запись на самом деле содержит три уравнения.

Замечание 2: Это формальная запись и выражение вида в данном случае допустимо.

Замечание 3: Надо понимать, что для уравнения плоскости (прямой) играет роль именно направление перпендикулярного (направляющего) вектора, а не он сам. Т.о. вполне допустимо из каких-либо соображений заменять данный (или полученный в ходе решения) вектор на пропорциональный ему. Целесообразно также упрощать полученное уравнение, деля все его коэффициенты на общий множитель.

Вопрос 2: Правило дифференцирования:

Если функции f и g дифференцируемы в точке то в этой же точке дифференцируемы сумма, произведение и частное (если ) этих функций, причем

 

 

 

Доказательство:

а)

По свойству предела суммы получаем

Постоянный множитель C можно выносить из-под знака производной:

В частности,

б) Функцию f · g можно записать в виде Но

По свойству предела произведения получаем

Используя доказанное равенство, получим, что

Раскрывая скобки и приводя подобные члены, получим формулу

в) Для доказательства этой формулы заметим, что

Воспользовавшись свойством предела частного, получим

После этого представим как произведение функций f и откуда и следует доказываемая формула.

Если f дифференцируема, то где также дифференцируема, причем

Доказательство этой формулы предоставляем читателю.

Если функция y = f (x) непрерывна и строго возрастает в окрестности точки причем то функция x = φ (y), обратная к функции y = f (x), дифференцируема в точке y0 = f (x0), причем

Если функции y = f (x) и z = g (y) дифференцируемы в точках x0 и y0 = f (x0) соответственно, то сложная функция z = g (f (x)) дифференцируема в точке x0, причем

Следствием этой теоремы является тот факт, что дифференциал функции y = f (x) имеет один и тот же вид как в случае, когда x – независимая переменная, так и в случае, когда x – дифференцируемая функция другого переменного.

Если f (x) – четная функция, то – нечетная; если f (x) – нечетная функция, то – четная.

Пусть в окрестности точки t0 определены функции x (t) и y (t), причем x (t) непрерывна и строго монотонна. Пусть в этой окрестности существуют производные и Тогда сложная функция y = y (t (x)), где t (x) – функция, обратная x (t), дифференцируема по x, причем

Билет 12:

Вопрос 1: Условия параллельности и перпендикулярности прямых в пространстве:

Чтобы две прямые были параллельны необходимо и достаточно, чтобы направляющие векторы этих прямых были коллинеарны, т.е. их соответствующие координаты были пропорциональны.

Чтобы две прямые были перпендикулярны необходимо и достаточно, чтобы направляющие векторы этих прямых были перпендикулярны, т.е. косинус угла между ними равен нулю.

 

Вопрос 2: Производная от сложной функции. Доказательство:

Теорема. Пусть сложная функция y=f( (x)) такова, что функция y=f(х0) определена на промежутке T, а функция t= (x) определена на промежутке X и множество всех ее значений входит в промежуток T. Пусть функция t= (x) имеет производную в каждой точке внутри промежутка X, а функция y=f(t) имеет производную в каждой точке промежутка T. Тогда функция y=f( (x)) имеет производную в каждой точке внутри промежутка, вычисляемую по формуле .

 

Доказательство:

Так как функция y=f(x) дифференцируема в точке х0, то приращение этой функции в точке х0 может быть записано в виде:

Где .

Поделив равенство (1) на , получим:

Равенство (2) справедливо для любых достаточно малых х.

Возьмём равное приращению функции x= , соответствующего приращению аргумента t в точке t0, и устремим в этом равенстве .

Так как по условию функция x= имеет в точке t0 производную, то она непрерывна в этой точке. Следовательно, согласно определению непрерывной функции в точке, при . Но тогда и  также стремится к 0, то есть имеем

В силу соотношения (3) существует предел правой части равенства (2) при , равный . Значит существует предел при   и левые части равенства (2), который по определению производной равно производной сложной функции y=f[ ]  в точке t0, тем самым доказывается дифференцируемость сложной функции и устанавливается формула .

 

Билет 13:

Вопрос 1: Условия параллельности и перпендикулярности прямой и плоскости:

Для того, чтобы прямая и плоскость были параллельны, необходимо и достаточно, чтобы вектор нормали к плоскости и направляющий вектор прямой были перпендикулярны. Для этого необходимо, чтобы их скалярное произведение было равно нулю.

Для того, чтобы прямая и плоскость были перпендикулярны, необходимо и достаточно, чтобы вектор нормали к плоскости и направляющий вектор прямой были коллинеарные. Это условие выполняется, если векторное произведение этих векторов было равно нулю.

Вопрос 2: Производная от неявной и параметрически заданной функции:

Производная функции, заданной неявно:

Уравнение вида , содержащее переменные и , иногда можно разрешить относительно и получить в явном виде зависимость . Например, если дано уравнение , то из него можно получить зависимость . Однако такое явное выражение через , использующее лишь элементарные функции, можно получить не из любого уравнения вида  (даже если в самом уравнении участвуют лишь элементарные функции).

Покажем, как, используя уравнение , найти производную , не выражая через в явном виде. Для этого найдём производные левой и правой части уравнения по переменной , считая промежуточным аргументом, а потом выразим из получающегося равенства.

 

Производные функции, заданной параметрически:

Пусть задана зависимость двух переменных и от параметра , изменяющегося в пределах от до :

Пусть функция имеет обратную: . Тогда мы можем, взяв композицию функций и , получить зависимость от : . Зависимость величины от величины , заданная через зависимость каждой из них от параметра в виде , называется функцией , заданной параметрически.

Производную функции , заданной параметрически, можно выразить через производные функций и : поскольку и, по формуле производной обратной функции, , то

где - значение параметра, при котором получается интересующее нас при вычислении производной значение .

Заметим, что применение формулы приводит нас к зависимости между и , снова выраженной в виде параметрической зависимости: , ; второе из этих соотношений - то же, что участвовало в параметрическом задании функции . Несмотря на то, что производная не выражена через в явном виде, это не мешает решать нам задачи, связанные с нахождением производной, найдя соответствующее значение параметра .

 

Билет 14:

Вопрос 1: Определение окружности. Вывод уравнения:

 

Определение: Окружностью называется геометрическое место точек плоскости, равноудаленных от фиксированной точки, называемой центром окружности.

Получим уравнение окружности, если известны ее центр и радиус.

Теорема: Окружность радиуса с центром в точке имеет уравнение

(1)

Доказательство. Пусть -- текущая точка окружности. По определению окружности расстояние равно (рис. 12.1)

 

Рис.12.1.Окружность

 

По формуле для плоскости получаем, что точки окружности и только они удовлетворяют уравнению

Обе части уравнения неотрицательны. Поэтому после возведения их в квадрат получим эквивалентное уравнение (1).

Если в уравнении (1) раскрыть скобки и привести подобные члены, то вид его изменится. Однако любое уравнение окружности с помощью тождественных преобразований можно привести к виду (1). Для этого достаточно выделить полные квадраты по переменным и .

Вопрос 2: Логарифмическое дифференцирование:

Если требуется найти из уравнения , то можно:


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: