В этом случае положение движущейся точки в пространстве определяют тремя ее декартовыми координатами относительно выбранной неподвижной прямоугольной системы осей (рис. 41). При движении точки эти координаты являются однозначными и непрерывными функциями времени, т.е. уравнения движения получают в виде:
,
,
(14)
При координатном способе задания движения точки, траектория в непосредственном виде не дается, но может быть получена из уравнений движения. Исключая из уравнений движения время, получаем два соотношения между координатами
, которые определяют линию, описываемую в пространстве движущейся точкой, т.е. ее траекторию.
Если движущаяся точка остается за все время движения в одной и той же плоскости, то, приняв эту плоскость за координатную
, получаем два уравнения движения
,
.
Уравнения движения точки в координатной форме представляют собой уравнение траектории в параметрической форме, где за независимый параметр принято время. Исключая его из уравнений движения, получаем уравнение траектории.
При движении точки в плоскости можно пользоваться не только декартовыми координатами. В этом случае можно ввести в рассмотрение полярные координаты (рис. 42).
![]() |
38
Положение точки в этом случае будут определять полярный угол
и вектор
, т.е. уравнения движения точки в полярных координатах имеют вид:
.
Векторный способ задания движения точки.
В этом случае положение точки в пространстве определяется только радиусом – вектором, проведенным из начала декартовой системы координат (рис. 43). Уравнение движения в этом случае имеет вид:
(15)
Векторный способ задания движения удобен для установления общих зависимостей, так как позволяет описать движение точки одним векторным уравнением вместо трех скалярных.







