Глава 3. ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК
Сила и плотность тока
Электрическим током называется упорядоченное движение электрических зарядов. Заряды, образующие электрический ток, называются носителями тока. Для существования электрического тока в проводящей среде необходимо наличие носителей тока и электрического поля внутри проводника. Под направлением тока понимается направление вектора плотности тока:
, (3.1)
где
– объемная плотность носителей тока,
– скорость их упорядоченного движения.

Заряд, переносимый через площадку
, перпендикулярную плотности тока
, за промежуток времени
равен
,
отсюда
, (3.2)
где
– сила тока, (количественная характеристика) равная величине заряда
, переносимого через поверхность
в единицу времени. Для постоянного тока
.
Элементарная сила тока, через поверхность
, из (3.2)
. (3.3)
Зная вектор плотности тока
в каждой точке интересующей нас поверхности (
), можно найти и силу тока через эту поверхность как поток вектора
:
. (3.4)
Сила тока – величина скалярная и алгебраическая.
Единица электрического тока в СИ:
.
Единица электрического заряда в СИ:
.
Единица плотности тока в СИ:
.
Уравнение непрерывности
Рассмотрим область
некоторой среды, в которой течет ток плотности
, и ограничим ее замкнутой поверхностью
. Допустим, что заряд внутри области уменьшается с течением времени. Тогда скорость убывания заряда
, содержащегося в объеме
:
. (3.5)
Представим:
,
тогда уравнение (3.5) можно записать в виде
, (3.6)
(
, так как
может зависеть не только от времени, но и от координат).
Преобразуем левую часть равенства (3.6) по теореме Остроградского- Гаусса, получим
. (3.7)
(3.7) – уравнение непрерывности в интегральной форме.
Равенство (3.7) должно выполняться при произвольном выборе
, по которому берутся интегралы. Это возможно лишь в том случае, если в каждой точке пространства объема
выполняется условие:
. (3.8)
(3.8) – уравнение непрерывности в дифференциальной форме.
Физический смысл (3.8): в точках, которые являются источником вектора
происходит убывание электрического заряда.
Для стационарного тока:
и
, следовательно
, и (3.8) примет вид
. (3.9)
(3.9) – уравнение непрерывности для стационарного тока.
Таким образом, в случае стационарного (постоянного) тока вектор
не имеет источников. Это означает, что линии тока замкнуты сами на себя.
Под действием кулоновских сил взаимодействия, положительные носители тока в проводнике перемещаются от точек с большим потенциалом к точкам с меньшим потенциалом, а отрицательные носители движутся в обратном направлении. Это приводит к выравниванию потенциалов во всех точках проводника и исчезновению электрического тока. Поэтому поле кулоновских сил не может вызвать постоянный во времени процесс упорядоченного движения зарядов, т.е. постоянный ток. Следовательно, для существования постоянного тока в проводнике необходимо наличие сил не электростатического происхождения (сторонних сил), которые бы переносили положительные заряды против сил электрического поля в сторону возрастания потенциала, тем самым, поддерживая постоянную разность потенциалов на его концах. То есть, необходимо создать замкнутую проводящую цепь, в которой на носители тока действуют не только кулоновские, но также сторонние силы.
Природа сторонних сил может быть разной: химической, механической и т.д. Сторонние силы характеризуются электродвижущей силой (ЭДС), действующей в цепи или на некотором ее участке:
, (3.10)
где
– работа сторонних сил по перемещению единичного положительного заряда
на рассматриваемом участке цепи.
Добавочное поле сторонних сил создается источниками электрической энергии (батарейки, аккумуляторы, генераторы).
Закон Ома
Ом экспериментально установил закон: сила тока, текущего по однородному металлическому проводнику пропорциональна напряжению на проводнике, т.е.
, или с учетом коэффициента пропорциональности
, получим
, (3.11)
где
электрическое сопротивление проводника.
Для однородного проводника:
.
Величина сопротивления зависит от формы, размеров и материала проводника.
Для однородного цилиндрического проводника
, (3.12)
где
длина проводника;
площадь его поперечного сечения;
удельное электрическое сопротивление проводника.
Величина, обратная удельному электрическому сопротивлению, называется удельной электрической проводимостью проводника
. (3.13)
Найдем связь между плотностью тока
и полем
в локальной форме. Рассмотрим изотропный проводник, выделим в нем элементарный цилиндр объемом
. Будем считать
.
Через поперечное сечение цилиндра течет ток силой
. Напряжение, между концами цилиндра
.
Сопротивление цилиндра
, тогда закон Ома для элементарного проводника в виде цилиндра в каждой точке среды:
.
Из (3.3)
,
или
.
С учетом того, что
и
имеют одинаковое направление, можно написать
. (3.14)
(3.14) – закон Ома в дифференциальной (локальной) форме.