Занятие 3.1.1. Вода вокруг нас. Физические и химические свойства воды

Тема 3.1. Вода, растворы.

Периодическая печать

Журнал «Вестник образования России» http:/www.vestniknews.ru или http:/www.informika.ru

Журнал «Аутизм и нарушения развития» E-mail: mamontov@rambler.ru

Журнал «Профильная школа»

Журнал «Дефектология» editor@ise.iip.net

Журнал «Практическая психология и логопедия» panorama@migmail.ru

Журнал «Психология» ig-socin@ mail.ru

Журнал «Профессиональное образование» APO@FIRO.RUAPO@FIRO.RU

Журнал «Психическое здоровье»

Журнал «Коррекционная педагогика»

Журнал «Вопросы психологии»

Журнал «Специальная психология»

Журнал «Обучение и воспитание детей с проблемами в развитии»

Журнал «Вестник Московского Университета. Психология»

Журнал «Психологическая наука и образование»

Журнал «Психология обучения»

Журнал «Вестник психосоциальной и коррекционно-реабилитационной работы»

Журнал «Дошкольное воспитание»

Введение

Вода – самое удивительное и самое распространённое природное соединение – источник жизни и условие её формирования на Земле. Ограниченность водных ресурсов создаёт исключительно сложные проблемы для человечества.

Вся практическая деятельность человека с самой глубокой древности связана
с использованием воды и водных растворов.

В течение последних полутора-двух столетий учёные достигли значительных успехов в изучении строения и свойств воды, по существу, предопределяющих структуру и облик окружающего нас биологического мира. Вода оказалась весьма неординарной жидкостью, трудно поддающейся не только непосредственным экспериментальным исследованиям, но и моделированию.

Многие хорошо знакомые свойства воды исключительны в природе. И поэтому вода занимает особое положение по сравнению с другими веществами, известными
на Земле. Чем глубже учёные постигали природу воды, тем больше убеждались
в оригинальности её поведения, в неочевидности её свойств, в новых, ещё не до конца раскрытых её структурных особенностях.

Во все времена естествоиспытатели не обходили своим вниманием воду, пытаясь постичь секрет её удивительных свойств. И каждый раз отступали, признаваясь в своём бессилии.

Вода, можно сказать, – самая популярная и самая загадочная жидкость из всех существующих на Земле. Её издавна воспевали, поэты посвятили ей удивительные строки. А учёные по сей день, как и сотни лет назад, не могут дать точного ответа на, казалось бы, несложный вопрос: что такое вода?

1. Вода в природе

Вода – самое распространенное вещество, на Земле она распределена неравномерно.

Поверхность земного шара на 3/4 покрыта водой – это океаны, моря, озёра, ледники. Количество воды на поверхности воды оценивается в 1,39.1021 кг. В довольно больших количествах вода находится в морях и океанах (1,34. 1021 кг). Общие запасы свободной воды на земле составляют 1,4 млрд. км3. В совокупности жидкая водная оболочка Земли называется гидросферой, а твёрдая криосферой.

Самым вместительным хранилищем воды являются недра Земли. В коре Земли воды столько же, сколько и в Мировом океане, а в мантии в 10-12 раз больше.

Основное количество воды содержится в океанах (около 97,6%). В виде льда
на нашей планете воды имеется 2,14%. Вода рек и озёр составляет всего лишь 0,29%
и атмосферная вода – 0,0005%.

Природная вода всегда содержит растворённые соли, газы и органические вещества, а также микроорганизмы. Состав примесей зависит от происхождения воды. По минерализации различают следующие виды воды: атмосферные осадки (10-20 мг/кг), ультрапресные (до 200 мг/кг), пресные (200-500 мг/кг), слабоминерализованные
(0,5-1,0 г/кг), солоноватые (1-3 г/кг), с повышенной солёностью (10-35 г/кг), переходные к рассолам (35-50 г/кг), рассолы (более 50 мг/кг); максимальные концентрации солей содержат воды соляных озёр (до 300 г/кг) и глубокозалегающие подземные воды
(до 600 г/кг). В пресных водах преобладают ионы Ca2+, Mg2+, CI-, Na+, K+.
К микрокомпонентам природной воды относятся B, Li, Rb, Cu, Zn, Al, Be, W, U, Br, I
и др. Из растворённых газов в природных водах присутствуют N2, O2, CO2, благородные газы и углеводороды. Концентрация органических веществ в воде рек около 20 мг/кг,
в водах океана – около 4 мг/кг, причём их состав чрезвычайно разнообразен.

2. Биологическая роль воды

Биологическая роль воды обусловлена её уникальной химической структурой.
В водной среде возникла жизнь. Недостаток воды вызывает нарушение жизнедеятельности всех организмов, а её длительное отсутствие могут переносить лишь покоящиеся формы жизни (споры, семена растений). В большинстве случаев вода является неотъемлемым компонентом живых организмов. Функции воды многообразны: она служит растворителем для различных соединений, средой для реакций обмена веществ, определяет объём клеток и внеклеточных жидкостей, обеспечивает транспорт веществ в организме, участвует в терморегуляции. Содержание воды в разных организмах различается: например, у водорослей на долю воды приходится 90-98%,
в листьях наземных растений – 75-86%, в семенах злаков – 12-14%, у мхов и лишайников – 5-7%, у кишечнополостных – 95-98%, у насекомых – 45-65%, у млекопитающих –
60-70%. Неодинаково оно и в различных органах и тканях: самая богатая водой ткань
в теле человека – стекловидное тело глаза, содержащее 99% воды. Самая же бедная – эмаль зуба. В ней воды всего лишь 0,2%.

Вода также образуется в организме вследствие окисления жиров, углеводов
и белков, принятых с пищей. Такую воду называют метаболической. В медицине
и биологической науке метаболизмом называют процессы превращения веществ
и энергии, лежащие в основе жизнедеятельности организмов. Белки жиры и углеводы окисляются в организме с образованием воды (H2O) и углекислого газа (диоксида углерода CO2): при окислении 100 г жира образуется 107 г воды, а при окислении 100 г углеводов – 55,5 г воды. Некоторые организмы обходятся лишь метаболической водой
и не потребляют ее извне.

Общий объём воды, потребляемый человеком в сутки при питье и с пищей, составляет 2–2,5 л. Благодаря водному балансу столько же воды и выводится
из организма. Через почки и мочевыводящие пути удаляется около 50-60% воды.

При потере организмом человека 6-8% влаги повышается температура тела, краснеет кожа, учащается сердцебиение и дыхание, появляется мышечная слабость
и головокружение, начинается головная боль. Потеря 10% воды может привести
к необратимым изменениям в организме, а потеря 15-20% приводит к смерти, поскольку кровь настолько густеет, что с её перекачкой не справляется сердце.

Поэтому вода так важна для человека и живых организмов в целом.

3. Строение молекулы воды

Вода (оксид водорода, химическая формула H2O), простейшее химическое соединение. Молекула воды состоит из двух атомов водорода и одного атома кислорода. Связи между тремя атомами очень прочные. Молекулярная масса воды 18,016.

Оба элемента – водород и кислород – заметно выделяются из всех химических элементов, представленных в периодической системе Менделеева.

Водород как «горючий воздух» был известен ещё в 16 веке. За способность, сгорая, производить воду, «горючий воздух» впоследствии переименовали в «гидрогениум», т.е. рождающий воду.

Молекула воды

Молекула воды состоит из одного атома кислорода и двух атомов водорода (H2O). Схематично строение молекулы воды можно изобразить так:

Молекула воды является так называемой полярной молекулой, потому что ее положительный и отрицательный заряды не распределены равномерно вокруг какого-то центра, а размещены асимметрично, образуя положительный и отрицательный полюсы. Рисунок показывает в чрезвычайно упрощенном виде, как присоединены два атома водорода к одному атому кислорода, образуя молекулу воды.

Угол, отмеченный на рисунке, и расстояние между атомами зависят от агрегатного состояния воды (подразумеваются равновесные параметры, т.к. имеют место постоянные колебания). Так, в парообразном состоянии угол равен 104°40', расстояние O-H – 0,096 нм; во льду угол – 109°30', расстояние O-H – 0,099 нм. Различие параметров молекулы
в парообразном (свободном) состоянии и во льду вызвано влиянием соседних молекул. Также влиянию подвержены и молекулы в жидкой фазе, в которой помимо влияния соседних молекул воды существует сильное влияние растворенных ионов других веществ.

История определения состава молекулы воды

Начиная с истоков химии, учёные в продолжение довольно большого периода времени считали воду простым веществом, так как она не могла быть разложена в результате тех реакций, которые были известны в то время. Кроме того, постоянство свойств воды как бы подтверждало это положение.

Весной 1783 г., Кавендиш в своей кембриджской лаборатории работал с недавно открытым "жизненным воздухом" - так в то время называли кислород, и "горючим воздухом" (так называли водород). Он смешивал один объем "жизненного воздуха"
с двумя объемами "горючего воздуха" и пропускал через смесь электрический разряд. Смесь вспыхивала, и стенки колбы покрывались капельками жидкости. Исследуя жидкость, ученый пришел к выводу, что это чистая вода. Ранее подобное явление описал французский химик Пьер Макер: он ввел в пламя "горючего воздуха" фарфоровое блюдце, на котором образовались капельки жидкости. Каково же было удивление Макера, когда он исследовал образовавшуюся жидкость, и обнаружил что это вода. Получался какой-то парадокс: вода, гасящая огонь, сама образуется при горении. Как мы теперь понимаем, происходил синтез воды из кислорода и водорода:

H2 + O2 → 2H2O + 136,74 ккал.

В обычных условиях эта реакция не идет, и чтобы водород стал активен, нужно повысить температуру смеси, например с помощью электрической искры, как в опытах Кавендиша. Генри Кавендиш располагал достаточными данными, чтобы установить,
в каких пропорциях входит кислород и водород в состав воды. Но он этого не сделал. Возможно, ему помешала глубокая вера в теорию флогистона, в рамках которой он пытался интерпретировать свои эксперименты.

Весть об опытах Кавендиша достигла Парижа в июне того же года. Лавуазье сразу же повторил эти опыты, затем провел целую серию подобных экспериментов и через несколько месяцев 12 ноября 1783 г. в день святого Мартина доложил результаты исследований на традиционном собрании Французской академии наук. Любопытно название его доклада, характерное для всей той несуетливой педантичной эпохи великих открытий естествознания: "О природе воды и экспериментах, по-видимому, подтверждающих, что это вещество не является, строго говоря, элементом, а может быть разложено и образовано вновь". Доклад был встречен горячими возражениями – данные Лавуазье явно противоречили уважаемой и популярной в то время теории флогистона. Лавуазье сделал правильный вывод, что вода образуется при соединении "горючего газа" с кислородом и содержит (по массе) 15% первого и 85% второго (современные данные – 11,19% и 88,81%).

Через два года Лавуазье вновь вернулся к опытам с водой. Академия наук поставила перед Лавуазье практическую задачу – найти дешевый способ получения водорода как самого легкого газа для нужд нарождающегося воздухоплавания. Лавуазье привлек к работе военного инженера, математика и химика Жана Мёнье. В качестве исходного вещества они выбрали воду – вряд ли можно было отыскать сырье дешевле. Зная, что вода – это соединение водорода с кислородом, они пытались найти способ отнять от нее кислород. Для этой цели годились различные восстановители, наиболее же доступным было металлическое железо. Из реторты-кипятильника водяные пары поступали в раскаленный докрасна на жаровне ружейный ствол с железными опилками. При температуре красного каления (800 °С) железо вступает в реакцию с водяным паром, и выделяется водород:

3Fe + 4H2O → Fe3O4 + 4H2

Образовавшийся при этом водород собирался, а не прореагировавшие водяные пары конденсировались в холодильнике и отделялись в виде конденсата от водорода. Из каждых 100 гран воды получалось 15 гран водорода и 85 гран кислорода (1 гран = 62,2 мг). Эта работа имела и важное теоретическое значение. Она подтвердила ранее сделанные выводы (из опыта по сжиганию водорода в кислороде под колоколом), что вода содержит 15% водорода и 85% кислорода (современные данные – 11,19% и 88,81%).

Исходя из того, что "горючий воздух" участвует в образовании воды, французский химик Гитон де Морво в 1787 г. предложил назвать его hydrogene (от слов гидро – вода и геннао – рождаю). Русское слово "водород", т.е. "рождающий воду", является точным переводом латинского названия.

Жозеф Луи Гей-Люссак и Александр Гумбольдт, проведя совместные опыты в 1805 году, впервые установили, что для образования воды необходимы два объема водорода и один объем кислорода. Подобные мысли были высказаны и итальянским ученым Амедео Авогадро. В 1842 г. Жан Батист Дюма установил весовое соотношение водород и кислорода в воде как 2:16.

Однако в силу того что с атомными массами элементов в первой половине XIX века было много неразберихи и эта обстановка еще больше осложнилась в связи с введением понятия "эквивалентный вес", то долгое время формула воды записывалась в самых различных вариантах: то как HO, то как H2O и даже H2O2. Об этом писал Д.И. Менделеев: "В 50-х годах одни принимали O=8, другие O=16, если H=1. Вода для первых была HO, перекись водорода HO2, для вторых, как ныне, вода H2O, перекись водорода H2O2 или HO. Смута, сбивчивость господствовали...".

После Международного конгресса химиков в Карлсруэ, состоявшегося в 1860 году, удалось внести ясность в некоторые вопросы, сыгравшие заметную роль в дальнейшем развитии атомно-молекулярной теории, а, следовательно, и в правильном толковании атомарного состава воды. Была установлена единая химическая символика.

Экспериментальные исследования, выполненные в XIX веке весовыми и объемными методами, в конце концов, убедительно показали, что вода как химическое соединение может быть выражена формулой H2O.

Как уже известно, молекула воды довольно "однобока" - оба атома водорода примыкают к кислороду с одной стороны. Интересно, что эта чрезвычайно важная особенность молекулы воды была установлена чисто умозрительно задолго до эпохи спектроскопических исследований английским профессором Д. Берналом. Он исходил из того, что вода обладает весьма сильным электрическим моментом (в то время, в 1932 г., это было известно). Проще всего, конечно, молекулу воды "сконструировать", расположив все входящие в нее атомы по прямой линии, т.е. H–O–H. "Однако, – пишет Бернал, – водяная молекула подобным образом построена быть не может, ибо при такой структуре молекула, содержащая два положительных атома водорода и отрицательный атом кислорода, была бы электрически нейтральной, не обладала бы определенной направленностью… электрический момент может быть только, если оба атома водорода примыкают к кислороду с одной и той же стороны".

Водород – единственный элемент, не имеющий полностью заполненной электронной оболочки – 1s1. Из-за исключительной простоты его строения (один протон и один электрон) ему присущи совершенно особые свойства. Между молекулами, образованными водородом с другими элементами, возникают единственные в своём роде водородные связи, сила взаимного притяжения которых по величине совершенно несравнима с взаимодействием всех прочих молекул.

В настоящее время известно 5 изотопов атома водорода с атомными массами
1 (протий), 2 (дейтерий), 3 (тритий), 4 и 5 (названия пока не даны). Наиболее распространённое соединение водорода – вода, в основе которой находится протий.

Недавно обнаружены изотопы водорода с атомными массами 4 и 5, но физические и химические свойства обоих изотопов пока не изучены. Известно только, что время их существования ничтожно мало.

Кислород открыт в 1774 г. английским химиком Джозеф Пристли. Он занимает восьмое место в периодической системе Менделеева. Его внутренняя электронная оболочка укомплектована полностью (два электрона), на внешней имеется 6 электронов – 1s22s22p4. Кислород – элемент с резко выраженными электроположительными свойствами. Он атакует все атомы, отдающие электроны (к каковым, прежде всего, относится водород),
и представляет собой один из наиболее агрессивных элементов в природе.

Известно 3 изотопа кислорода с атомными массами 16, 17 и 18. Но никаких данных о физико-химических свойствах изотопов 17О и 18О нет, наукой они не изучены.

При нормальных условиях вода – жидкость без запаха, вкуса и цвета.

Атомы H и O в молекуле воды расположены в вершинах равнобедренного треугольника с длиной связи O-H 0,0957 нм: угол H-O-H = 104,5о.

Вода существует в твёрдом, жидком и газообразном состоянии. Молекулы воды взаимодействуют друг с другом и с полярными молекулами других веществ (атомы водорода могут образовывать водородные связи с атомами O, N, F, CI, S и др.).

Каждая молекула воды способна образовывать 4 водородные связи: две – как донор протонов, две – как акцептор. Средняя длина таких связей около 0,28 нм.

Трёхмерная сетка водородных связей сохраняется в жидкой воде. Установлено объединение молекул воды в обширные кластеры (130 молекул H2O при 0 оС, 90 – при
20 оС, 60 – при 72 оС, время жизни 10-11 - 10-10 с)

Изотопный состав. Существует 9 разновидностей молекул воды, включающих только стабильные изотопы. Их содержание в природной воде в среднем составляет (моль, %): 1H216O – 99,73; 1H218O – 0,2; 1H217O – 0,04; 1H2H16O - 0,03; остальные присутствуют в ничтожных количествах.

И кислород, и водород имеют природные и искусственные изотопы. В зависимости от типа изотопов, входящих в молекулу, выделяют следующие виды воды: лёгкая вода (просто вода), тяжёлая вода (дейтериевая), сверхтяжёлая вода (тритиевая). Исследователи раскрывают всё более тонкие и сложные механизмы «внутренней организации» водной массы. Изучение структуры жидкой воды ещё не закончено; оно даёт всё новые факты, углубляя и усложняя наши представления об окружающем мире.

4. Свойства воды

4.1. Химические свойства воды

Вода является наиболее распространённым растворителем на земле, во многом определяющим характер химии, как науки. Большая часть химии, при её зарождении как науки, начиналась именно как химия водных растворов веществ.

Воду иногда рассматривают, как кислоту и основание одновременно (катион H+ анион OH-). В отсутствие посторонних веществ в воде одинакова концентрация гидроксид-ионов и ионов водорода. Сама по себе вода относительно инертна в обычных условиях, но её сильно полярные молекулы образуют гидраты и кристаллогидраты. Сольволиз и в частности гидролиз, происходит в живой и неживой природе, и широко используется в химической промышленности.

Почти шарообразная молекула воды имеет заметно выраженную полярность, так как электрические заряды в ней расположены асимметрично.

Вода имеет высокую диэлектрическую проницаемость, самую высокую из всех известных соединений. Благодаря этому, вода проявляет себя как универсальный растворитель. Нет такого вещества, следы которого нельзя было бы обнаружить в воде. Обычно растворимость возрастает с увеличением температуры. Растворимость в воде малополярных веществ (газов) сравнительно мала. С ростом давления и при понижении температуры растворимость газов возрастает. Между растворёнными в воде ионами, атомами, молекулами, не вступающими с ней в химические реакции, и молекулами воды существуют межмолекулярные взаимодействия.

Вследствие высокой растворяющей способности воды, получить её в чистом виде трудно. Для научных исследований, в медицине и пр. применяют дистиллированную воду; абсолютно чистую воду синтезируют из H2 и O2.

Вода – слабый электролит, диссоциирующий по уравнению: H2O = H+ + OH-. Степень диссоциации воды возрастает при повышении температуры. Диссоциация воды – причина гидролиза солей слабых кислот и оснований. Концентрация ионов H+ – важная характеристика водных растворов.

Вода окисляется кислородом до H2O2. При взаимодействии воды с F2 образуются HF и другие соединения. С остальными галогенами при низких температурах вода образует смеси кислот (например, HCI и HCIO). При пропускании паров воды через раскалённый уголь разлагается на водяной газ (CO и H2). При повышенной температуре в присутствии катализатора реагирует с CO и углеводородами с образованием H2; вода взаимодействует с наиболее активными металлами с образованием H2 и соответствующего гидроксида. При взаимодействии воды со многими оксидами образуются кислоты или основания. С солями образует кристаллогидраты, со многими газами при низких температурах (инертные газы, углеводороды) – соединения включения, газовые гидраты. Присоединение воды к молекулам непредельных углеводородов лежит в основе промышленного способа получения спиртов, альдегидов и кетонов.

4.2. Физические свойства воды

Вода обладает рядом аномальных физических свойств.

· Вода – единственное вещество на Земле, способное существовать одновременно
в трёх состояниях: твёрдом, жидком и газообразном.

· При таянии льда его плотность уменьшается, при замерзании вода расширяется. Другие вещества при замерзании наоборот уменьшаются.

· Высокая температура и удельная теплота плавления 0 °C и 333,55 кДж/кг, температура кипения 100 °C и удельная теплота парообразования 2250 кДж/кг.

· Вода обладает высокой теплоёмкостью. Теплоёмкость воды в 10 раз больше теплоёмкости стали и в 30 раз больше теплоёмкости ртути.

· Вода обладает низкой вязкостью.

· Вода имеет высокое поверхностное натяжение. Ни одно вещество не имеет такого сильного поверхностного натяжения.

· Отрицательный электрический потенциал поверхности воды.

Все эти аномальные особенности воды связаны с наличием водородных связей. Из-за большой разности электроотрицательностей атомов водорода и кислорода электронные облака сильно смещены в сторону кислорода. По причине этого, а также того, что ион водорода (протон) не имеет внутренних электронных слоев и обладает малыми размерами, он может проникать в электронную оболочку атома соседней молекулы. Благодаря этому, каждый атом кислорода притягивается к атомам водорода других молекул и наоборот. Определенную роль играет протонное обменное взаимодействие между молекулами и внутри молекул воды.

При таянии льда часть связей рвётся, что позволяет уложить молекулы воды плотнее; при нагревании воды связи продолжают рваться, и плотность её растёт, но при температуре выше 4 °C этот эффект становится слабее, чем тепловое расширение. При испарении рвутся все оставшиеся связи. Разрыв связей требует много энергии, отсюда высокая температура и удельная теплота плавления и кипения и высокая теплоёмкость.

Вязкость воды обусловлена тем, что водородные связи мешают молекулам воды двигаться с разными скоростями.

По сходным причинам вода является хорошим растворителем. Каждая молекула растворяемого вещества окружается молекулами воды, причём положительно заряженные участки молекулы растворяемого вещества притягивают атомы кислорода,
а отрицательно заряженные – атомы водорода. Поскольку молекула воды мала
по размерам, много молекул воды могут окружить каждую молекулу растворяемого вещества.

Вода проводит электричество. По электропроводности воды можно определить её чистоту.

При нормальном атмосферном давлении (760 мм рт. ст., 101 325 Па), вода (лёд) тает (плавится) при температуре в 0 °C и кипит (превращается в водяной пар) при температуре 100 °C (температура 0 °C и 100 °C были специально выбраны как температура таяния и кипения воды при создании температурной шкалы "по Цельсию"). При снижении давления температура таяния (плавления) воды медленно растёт,
а температура кипения падает. При давлении в 611,73 Па (около 0,006 атм.) температура кипения и плавления совпадает и становится равной 0,01 °C. Такое давление и температура называются тройной точкой воды. При более низком давлении вода
не может находиться в жидком состоянии, и лёд превращается непосредственно в пар.

При росте давления температура кипения воды растёт, плотность водяного пара
в точке кипения тоже растёт, а жидкой воды – падает. При температуре 374 °C (647 K) и давлении 22,064 МПа (218 атм.) вода проходит критическую точку. В этой точке плотность и другие свойства жидкой и газообразной воды совпадают. При более высоком давлении нет разницы между жидкой водой и водяным паром, следовательно, нет и кипения или испарения.

Вода сильно поглощает инфракрасное излучение, и поэтому водяной пар является основным естественным парниковым газом, отвечающим более чем за 60% парникового эффекта. Благодаря большому дипольному моменту молекул, вода также поглощает микроволновое излучение, на чём основан принцип действия микроволновой печи.

В периодической системе элементов Д.И. Менделеева кислород образует отдельную подгруппу. Она так и называется: подгруппа кислорода.

Входящие в нее кислород, сера, селен и теллур имеют много общего в физических и химических свойствах. Общность свойств прослеживается, как правило, и для однотипных соединений, образованных членами подгруппы. Однако для воды характерно отклонение от правил.

Из самых легких соединений подгруппы кислорода (а ими являются гидриды) вода – легчайшее. Физические характеристики гидридов, как и других типов химических соединений, определяются положением в таблице элементов соответствующей подгруппы. Так, чем легче элемент подгруппы, тем выше летучесть его гидрида. Поэтому в подгруппе кислорода самой высокой должна быть летучесть воды – гидрида кислорода.

Это же свойство очень явственно проявляется и в способности воды «прилипать» ко многим предметам, то есть смачивать их. При изучении этого явления установили, что все вещества, которые легко смачиваются водой (глина, песок, стекло, бумага и др.), непременно имеют в своем составе атомы кислорода. Для объяснения природы смачивания этот факт оказался ключевым: энергетически неуравновешенные молекулы поверхностного слоя воды получают возможность образовывать дополнительные водородные связи с «посторонними» атомами кислорода. Благодаря поверхностному натяжению и способности к смачиванию, вода может подниматься в узких вертикальных каналах на высоту большую чем та, которая допускается силой тяжести, то есть вода обладает свойством капиллярности.

Капиллярность играет важную роль во многих природных процессах, происходящих на Земле. Благодаря этому вода смачивает толщу почвы, лежащую значительно выше зеркала грунтовых вод и доставляет корням растений растворы питательных веществ. Капиллярностью обусловлено движение крови и тканевых жидкостей в живых организмах.

Самыми высокими оказываются у воды как раз те характеристики, которые должны были бы быть самыми низкими: температуры кипения и замерзания, теплоты парообразования и плавления.

Температуры кипения и замерзания гидридов элементов кислородной подгруппы графически представлены на рис. 1.7. У самого тяжелого из гидридов H2Te они отрицательны: выше 0°С это соединение газообразно. По мере перехода к гидридам более легким (H2Se, H2S) температуры кипения и замерзания все более снижаются. Сохранись и далее эта закономерность, можно было бы ожидать, что вода должна кипеть при -70°С и замерзать при -90°C. В таком случае в земных условиях она никогда
не могла бы существовать ни в твердом, ни в жидком состояниях. Единственно возможным было бы газообразное (парообразное) состояние. Но на графике зависимости температуры неожиданно резкий подъем – температура кипения воды +100°С, замерзания – 0°C. Это наглядное преимущество ассоциативности – широкий температурный интервал существования, возможность осуществить все фазовые состояния в условиях нашей планеты. Ассоциативность воды сказывается и на очень высокой удельной теплоте ее парообразования. Чтобы испарить воду, уже нагретую
до 100°С, требуется вшестеро больше количества теплоты, чем для нагрева этой же массы воды на 80°С (от 20 до 100°С).

Кипение заключается в том, что пузыри пара образуются внутри кипящей жидкости. При нормальном давлении чистая вода кипит при 100 'С. В случае подведения тепла через свободную поверхность будет ускоряться процесс поверхностного испарения, но объёмного парообразования, характерного для кипения, не возникает. Кипение может быть осуществлено и понижением внешнего давления, так как в этом случае давление пара, равное внешнему давлению, достигается при более низкой температуре. На вершине очень высокой горы давление и соответственно точка кипения настолько понижаются, что вода становится непригодной для варки пищи - не достигается требуемая температуры воды. При достаточно высоком давлении воду можно нагреть настолько, что в ней может расплавиться свинец (327 °С), и все же она не будет кипеть.

Помимо сверхбольших температур кипения плавления (причем последний процесс требует слишком большой для такой простой жидкости теплоты плавления), аномален сам диапазон существования воды - сто градусов, на которые разнятся эти температуры, - довольно большой диапазон для такой низкомолекулярной жидкости, как вода. Необычайно велики пределы допустимых значении переохлаждения и перегрева воды - при аккуратном нагревании или охлаждении вода остается жидкой от -40 °C до +200 °C. Тем самым температурный диапазон, в котором вода может оставаться жидкой, расширяется до 240 °C.

Каждую минуту миллион тонн воды гидросферы испаряется от солнечного нагрева. В результате в атмосферу постоянно поступает колоссальное количество теплоты, эквивалентное тому, которое бы вырабатывали 40 тысяч электростанций мощностью 1 млрд. киловатт каждая.

При плавлении льда немало энергии уходит на преодоление ассоциативных связей ледяных кристаллов, хотя и вшестеро меньше, чем при испарении воды. Молекулы Н2O фактически остаются в той же среде, меняется лишь фазовое состояние воды.

Удельная теплота плавления льда более высокая, чем у многих веществ, она эквивалентна расходу количества теплоты при нагреве 1 г воды на 80°С (от 20 до 100°С).

При замерзании воды соответствующее количество теплоты поступает
в окружающую среду, при таянии льда поглощается. Поэтому ледяные массы,
в отличие от масс парообразной воды, являются своего рода поглотителями тепла в среде с плюсовой температурой.

Аномально высокие значения удельной теплоты парообразования воды и удельной теплоты плавления льда используются человеком в производственной деятельности. Знание природных особенностей этих физических характеристик иногда подсказывает смелые и эффективные технические решения. Так, воду широко применяют
в производстве как удобный и доступный охладитель в самых разнообразных технологических процессах. После использования воду можно возвратить в природный водоем и заменить свежей порцией, а можно снова направить на производство, предварительно охладив в специальных устройствах – градирнях.

На многих металлургических производствах Донбасса в качестве охладителя используют не холодную воду, а кипяток. Охлаждение идет за счет использования теплоты парообразования – эффективность процесса повышается в несколько раз, к тому же отпадает надобность в сооружении громоздких градирен. Конечно, кипяток-охладитель используют там, где нужно охладить объекты, нагретые выше 100°C. А вот пример совсем из другой области человеческой деятельности – сельского хозяйства, садоводства. Когда поздней весной внезапные ночные заморозки угрожают цветущим плодовым деревьям, опытные садоводы находят выход, кажущийся совершенно неожиданным: они проводят дождевание сада. Пелена мельчайших водных брызг окутывает замерзающие деревья. Капельки воды покрывают лепестки цветов. Превращаясь в лед, вода надевает на цветы ледяную шубу, отдавая при этом им свое тепло (335 Дж от 1 г замерзающей воды).

Широкое применение воды в качестве охладителя объясняется не только и не столько ее доступностью и дешевизной. Настоящую причину нужно тоже искать в ее физических особенностях. Оказывается, вода обладает еще одной замечательной способностью – высокой теплоемкостью. Поглощая огромное количество теплоты, сама вода существенно не нагревается. Удельная теплоемкость воды в пять раз выше, чем у песка, и почти в десять раз выше, чем у железа.

Способность воды накапливать большие запасы тепловой энергии позволяет сглаживать резкие температурные колебания на земной поверхности в различные времена года и в разное время суток. Благодаря этому вода является основным регулятором теплового режима нашей планеты.

Интересно, что теплоемкость воды аномальна не только по своему значению. Удельная теплоемкость разная при различных температурах, причем характер температурного изменения удельной теплоемкости своеобразен: она снижается по мере увеличения температуры в интервале от 0 до 37°С, а при дальнейшем увеличении температуры – возрастает. Минимальное значение удельной теплоемкости воды обнаружено при температуре 36,79°С, а ведь это нормальная температура человеческого тела! Нормальная температура почти всех теплокровных живых организмов также находится вблизи этой точки.

Оказалось, что при этой температуре осуществляются и микрофазовые превращения в системе «жидкость – кристалл», то есть «вода – лед». Установлено, что при изменении температуры от 0 до 100°С вода последовательно проходит пять таких превращений. Назвали их микрофазовыми, так как протяженность кристаллов микроскопична, не более 0,2...0,3 нм. Температурные границы переходов – 0, 15, 30, 45, 60 и 100°С.

Температурная область жизни теплокровных животных находится в границах третьей фазы (30...45°С). Другие виды организмов приспособились к иным температурным интервалам. Например, рыбы, насекомые, почвенные бактерии размножаются при температурах, близких к середине второй фазы (23...25°С), эффективная температура весеннего пробуждения семян приходится на середину первой фазы (5...10°С).

Характерно, что явление прохождения удельной теплоемкости воды через минимум при температурном изменении обладает своеобразной симметрией: при отрицательных температурах также обнаружен минимум этой характеристики. Он приходится на -20°С.

Если вода ниже 0°С сохраняет не замерзшее состояние, например, будучи мелкодисперсной, то около -20°С резко увеличивается ее теплоемкость. Это установили американские ученые, исследуя свойство водных эмульсий, образованных капельками воды диаметром около 5 микрон.

Углублённое изучение физического смысла и направлений практического применения данного явления еще ждут своих исследователей. Но уже и теперь ясно, что эти открытия представляют очень интересный и ценный познавательный материал.

Теплоемкость воды. Количество тепла, необходимого для нагревания 1 г воды на 1°, достаточно, чтобы нагреть на 1° 9,25 г железа, 10,3 г меди. Аномально высокая теплоемкость воды превращает моря и океаны в гигантский термостат, сглаживающий суточные колебания температуры воздуха. Причем не только большие массы воды, как моря, способы сглаживать эти колебания, но и обычный водяной пар атмосферы. Резкие суточные колебания температуры в районах великих пустынь связаны с отсутствием водяного пара в воздухе. Сухой воздух пустыни почти лишен водяного пара, который мог бы сдержать быстрое ночное охлаждение накалившегося за день песка, поэтому температура воздуха может оказаться не больше 5 °C.

Теплоёмкостью воды объясняется явление различного нагревания воды и суши: так как теплоёмкость твёрдых пород, составляющих поверхность суши, и теплоёмкость воды резко отличаются, то для нагревания до одной и той же температуры воды и песка потребуется различное количество тепла, поэтому днём температура песка выше, чем воды. Вода охлаждается медленнее, чем твёрдые породы, поэтому ночью песок холоднее, чем вода. Как известно, нагревание воздуха происходит не непосредственно лучами солнца, а путём отдачи тепла от нагреваемой поверхности суши и воды. В летнее время создаётся значительная разница температур между поверхностью суши и воды, в силу чего происходит перемещение воздуха в направлении, определяемом разницей температур воды морей и океанов и прилегающей к ним суши.

Теплоемкость воды (1 кал), кстати, в 2 раза больше теплоемкости льда (0,5 кал), а для всех других веществ плавление почти не сказывается на этой величине.

Почему в случае воды эта величина демонстрирует столь большое значение? Удельная теплоемкость – это количество тепла, которое надо сообщить одному грамму вещества, чтобы увеличить его температуру на один градус Цельсия. Следовательно, вода требует для своего нагревания аномально большое количество тепла. Так как возрастание температуры означает увеличение средней скорости движения молекул, то на молекулярном языке большая теплоемкость воды означает, что ее молекулы очень инертны. Чтобы увеличить среднюю скорость молекул H2O, им нужно почему-то сообщить довольно много энергии, хотя сами молекулы по молекулярным масштабам сравнительно невелики. Все объясняется существованием водородных связей. Так как большая часть молекул связана в довольно большие комплексы, то отдельная "среднестатистическая" молекула H2O может увеличить свою кинетическую энергию одним из двух способов. Она может, во-первых, освободившись от всех своих водородных связей, начать двигаться самостоятельно. И во-вторых, ускорение всего комплекса молекул приведет, разумеется, к увеличению скорости каждой молекулы H2O, входящей в этот комплекс. Очевидно, что оба эти способа требуют значительных энергетических затрат, что и приводит к большому значению удельной теплоемкости воды.

5. Память воды

5.1. Вода, которую мы не знали

Молекула воды – кристалл (структурированный).

Наука физика учит: вода не образует долгоживущих структур (если только в дело не вмешивается постороннее вещество). Конечно, существует водородная связь, за счёт которой молекулы воды могут соединяться в цепочки, но такие образования живут ничтожно малое время – 10-16 секунд. В теории это означает, что невозможно структурировать воду.

Однако вот уже несколько лет исследователи изучают способность воды организовывать долгоживущие структуры.

В 2003 году была защищена диссертация на тему памяти воды. Автор – Станислав Зенин. С.В. Зениным на основании данных, полученных тремя физико-химическими методами, построена и доказана геометрическая модель основного стабильного структурного образования из молекул воды (структурированная вода), а затем получено изображение этих структур с помощью контрастно-фазового микроскопа. Структурной единицей такой воды является кластер, состоящий из клартатов – устойчивых (со сроком жизни до нескольких часов) соединений из 912 молекул воды размером от полумикрона до микрона.

В дистиллированной воде клартаты практически электронейтральны. Однако их электропроводность можно изменить. Если помешать магнитной мешалкой, связи между элементами клартатов будут разрушены и вода превратится в мёртвое, неупорядоченное месиво. Если поместить в воду предельно малое количество другого вещества (хоть одну молекулу) клартаты начнут «перенимать» его электромагнитные свойства.

В структуре кластеров закодирована информация о взаимодействиях, имевших место с данными молекулами воды. Они как губка впитывают в себя всю информацию, которая происходит в окружающем пространстве. Зенин дал определение воды как вещества в информационно-фазовом состоянии, обладающего структурной, пригодной для хранения данных, биологического накопителя информации. При этом он выделил два типа «памяти» воды – первичную и долговременную. Первичная память воды появляется после однократного воздействия и представляет обратимое изменение её структуры и отображение на поверхности клартатов нового электромагнитного рисунка. Долговременная память воды – полное преобразование структуры элемента, вследствие длительного информационного воздействия. То есть, чтобы сформировать определённую структуру воды, достаточно в течение определённого времени передавать воде определённую эмоцию.

Чем выше в воде содержание кластеров, чем более упорядоченная её структура, тем более она способна сама себя воспроизводить, что и наблюдается в живых системах. Это свидетельствует о том, что вода организма человека может выполнять системообразующую роль, с одной стороны, и регуляторную роль – с другой. В этом отношении интересной является концепция двухкомпонентной системы восстановления повреждённых тканей, где алгоритм восстановления реализуется на уровне структурированной воды.

Автор флуктуационного метода очистки воды Ф.Р.Черников также считает, что вода хранит информацию вследствие того, что в структурно-динамических параметрах водной среды (обладающих специфической биологической активностью) остаётся информация о предшествующих воздействиях, включая воздействия самих водоочистительных процессов. Очищенной водой может считаться вода с высоким уровнем структурно-динамических параметров (по типу «талой воды»).

5.2. Роль воды, входящей в состав биологических жидкостей

Роль воды, входящей в состав биологических жидкостей (кровь, лимфа и др.), ещё мало освещена в современной литературе, но её значение, как информационного фактора, чрезвычайно велико и требует дальнейшего осмысления.

Последовательность процесса структурирования биогенной воды была предложена К.М.Резниковым в 2001 году. Эти данные раскрывают процессы передачи информации
в живых системах и возможности использования их в лечебных и диагностических целях. При этом понятие «информация» рассматривается как мера организованности движения (взаимодействия и перемещения) частиц в системе.

Если под влиянием какого-либо внешнего фактора (микроорганизм, токсин, электромагнитное излучение и др.) меняются информационные свойства воды,
то изменяются и структурно-функциональные компоненты клеток, тканей и органов.
По мнению автора предложенной модели К.М.Резникова изменения информационных возможностей структурированной воды могут быть наиболее ранними признаками возможности возникновения патологических явлений.

5.3 Исследования Масару Эмото

Доказательства информационных свойств воды показывает японский исследователь Масару Эмото. Он установил, что никакие два образца воды не образуют полностью одинаковых кристаллов при замерзании, и что их форма отражает свойства воды, несёт информацию о воздействии, оказанном на воду. Микрокристаллы изучают по фотографиям. Сначала капельки воды, помещённые в чашки Петри, резко охлаждают в течение двух часов, а затем помещают в специальный прибор – холодильную камеру, совмещённую с микроскопом и фотоаппаратом – где при температуре минус пять градусов рассматривают получившиеся кристаллы и снимают наиболее характерные. При этом изучаются образцы из различных водных источников мира, также вода, подвергнутая различным видам воздействия (музыка, изображение, излучение телевизора, мысли одного человека и группы людей). Доктор Эмото обнаружил,
что имеется существенная разница между кристаллами воды, прослушавшей «пастораль» Бетховена и песню в стиле «хеви-металл», между образцами, которые говорили «спасибо» и «меня от тебя тошнит», а слова «ангел» и «дьявол» образуют структуры, одновременно похожие и совершенно противоположные.

Кристаллы, образовавшиеся из только что полученной дистиллированной воды, имеют простую форму хорошо известных шестиугольных снежинок. Накопление информации меняет их строение, усложняя, повышая их красоту, если информация положительная. Или, напротив, искажая или даже нарушая первоначальные формы, если информация негативная.

Воду превращают в структурную с помощью особых аквадисков, нанотехнологиями, ультразвуком и даже музыкой. В православной церкви воду освящают, делая ее «святой». Список подобного рода попыток превратить обычную воду в «чудотворную» очень внушителен. Немецкая компания «Энерджетикс», производящая оборудование для популярной в альтернативной медицине магнитной терапии, начала недавно выпуск магнитов, которые при помещении в стакан воды «структурируют» обычную воду и делают её более полезной.

5.4. Перспективы использования структурированной воды

Безусловно, и доктора Эмото можно причислить к фантазёрам, которые используют сложную технику не по назначению. Японский учёный считает, что в основе всего сущего лежит единая вибрационная частота, волна резонанса (в его терминологии – ХАДО), и эта волна способна переносить эмоции людей на все окружающие их предметы. Поэтому, считает Эмото, надо благодарить еду, которую ешь, пресекать отрицательные эмоции и чаще молиться. Такие выводы способны лишь насмешить серьёзную научную общественность. Но соотечественники учёного демонстрируют утилитарный интерес к его работе: одни разработчики ищут способы преобразовывать процессы, происходящие в воде под воздействием электромагнитного излучения человеческого мозга, в понятные компьютеру сигналы. То есть подумывают об ЭВМ, которой можно управлять силой мысли. Другие хотят научить воду хранить двоичный код. Третьи интересуются, можно ли менять физико-химические параметры воды для специальных целей (например, делать её более вязкой, чтобы с меньшими энергозатратами охлаждать атомные реакторы.).

Такое положение вещей может однажды привести к тому, что как раз в тот момент, когда теоретическая наука перестанет сомневаться в праве воды на память, учёные создадут «водяные» компьютеры на телепатическом управлении.

Информационные свойства воды могут также широко использоваться в медицине. Так как вода может передавать информацию в живых организмах, её можно использовать в лечебных и диагностических целях.

При помощи структурированной воды можно выращивать высококачественные продукты и многое другое.

Заключение

Итак, вода не просто H2O. Она – смесь различного сочетания изотопов водорода
с изотопами кислорода. Число возможных сочетаний довольно велико – 42, из них более или менее изучены 2, остаётся ещё 40. И даже при самом смелом полёте фантазии невозможно предсказать, какие самые неожиданные свойства раскроет нам та или иная модификация воды.

Ясно, что по мере познания структуры воды, применяя всё более совершенные методы теоретического анализа, используя ЭВМ, учёные смогут предсказать если и не все, то весьма многие свойства этих оставшихся 40 сочетаний.

Одной или нескольким разновидностям воды, которые будут открыты в будущем, предстоит сыграть решающую роль в раскрытии таких биологических проблем как наследственность, деятельность мозга, излечение от недугов, долголетие...

Следует заметить, что за последние годы знания о структуре и свойствах воды и её растворах значительно обогатились благодаря использованию новейших поколений счётно-решающих систем и компьютерной техники.

Сейчас особенно отчётливо видно, каким трудным и сложным объектом для исследователей оказалась вода.

Исследование воды, важнейшего природного соединения, заметно продвинулось вперёд благодаря усилиям химиков, физиков, биологов, геологов, медиков и других специалистов. Удалось собрать интереснейшую информацию о её составе, свойствах, структуре, учёные приоткрыли занавес и даже заглянули в мир атомов и молекул, которые формируют необычную ажурную структуру воды.

Многое известно о воде, но ещё больше предстоит узнать. В 1934 году академик
Н.Д. Зелинский писал: «если в столь простом веществе, как вода, наукой не всё было открыто, то как много ещё остаётся неясного и точно неисследованного во всём окружающем нас материальном мире, в эволюционном процессе которого появился
и человек». Эти слова Н.Д. Зелинского и сейчас не потеряли своей актуальности.
Их современность и программная целенаправленность неоспоримы. Пусть они станут путеводной звездой для тех, кто только делает первые шаги на благодатной
и неисчерпаемой ниве научных поисков, кто пытается раскрыть сложное сплетение природных явлений и понять облик окружающего нас мира, физическая и биологическая структура которого во многом предопределена необычным строением воды.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: