double arrow

Несмещенная оценка является тем более точной, чем меньшую дисперсию она имеет


• Предположим, что случайная величина X на генеральной совокупности имеет математическое ожидание т и дисперсию σ2. В качестве точечной оценки математического ожидания можно принять выборочное среднее:

•Эта оценка является состоятельной и несмещенной. Действительно,

При

Если же выборка взята из нормально распределенной генеральной совокупности, то оценка является и эффективной.

При обосновании состоятельности оценки мы получили важную формулу для дисперсии выборочного среднего, которая будет использована в дальнейшем

:

В качестве точенной оценки дисперсии генеральной совокупности принимается специальная характеристика, называемая несмещенной дисперсией:

=

Одним из наиболее распространенных методов оценивания параметров распределения является метод максимального правдоподобия. Для непрерывной случайной величины с известной плотностью f(x,θ), зависящей от некоторого неизвестного параметра θ, вводится функция правдоподобия

где— фиксированные выборочные данные.

В качестве оценки параметра θ принимается такое значение, которое обеспечивает максимум функции правдоподобия. На практике, как правило, используется lnL(θ)—логарифмическая функция правдоподобия. Приравнивая нулю производную

находят оценку максимального правдоподобия.

Иногда в статистических расчетах важно не только найти оценку параметра, но и охарактеризовать ее точность. Для этого вводится понятие об интервальной оценкепараметра.

Доверительным интерваломпараметра θ называется интервал (θ1 θ2 ) содержащий истинное значение θ с заданной вероятностью p=1-α

P(θ1<θ<θ2) = 1-α .

Число р называется доверительной вероятностью, или надежностью оценки, и принимается близким к единице: 0,9; 0,95; 0,99. Значение α называется уровнем значимости. Для доверительного интервала математического ожидания нормально распределенной генеральной совокупности при известной дисперсии σ2 можно получить следующее соотношение:

где u1-α/2 — квантиль нормального распределения порядка 1-α/2, определяемая по таблице

При неизвестной дисперсии генеральной совокупности формула для доверительного интервала математического ожидания нормально распределенной совокупности примет вид:

где s — квадратный корень из несмещенной дисперсии;

— квантиль распределения Стьюдента с степенью свободы (n-1) порядка 1-α/2, определяемая по таблице

По аналогии может быть получена формула для расчета доверительного интервала дисперсии нормально распределенной генеральной совокупности при неизвестном математическом ожидании:

- квантиль распределения хи-квадрат с (n-1) степенью свободы порядка α/2, определяемая по таблице .

Рассмотрим пример


Сейчас читают про: