Вторая фаза репродукции

ТРАНСКРИПЦИЯ

 
 

Транскрипция — это переписывание ДНК на РНК по законам генетического кода. Это означает, что РНК сос­тоит из нуклеотидных последовательностей, комплемен­тарных ДНК. Нити ДНК в участке транскрипции разде­ляются и функционируют как матрицы, к которым при­соединяются комплементарные нуклеотиды благодаря спариванию комплементарных оснований (аденин связы­вается с тимином, урацил — с аденином, гуанин — с цитозином и цитозин — с гуанином) (рис. 10).

 
 

Рис. 10. Транскрипция ДНК и образование ком­плементарной РНК-цепо­чки:

а - спаривание комплемен­тарных нуклеотидов при полимеризации;

А, Ц, Г, Т, У- сокращенные обозначе­ния аденина, цитозина, гуанина, тимина, урацила;

б - схема транскрипции ДНК:

1 - ДНК; 2 - растущая нить РНК; 3 - ДНК-зависимая РНК-полимераза.

Транскрипция осуществляется с помощью специального фермента — РНК-полимеразы, который связывает нуклеотиды путем образования 3-5´фосфодиэфирных мостиков. Такое связывание происходит лишь в присутствии ДНК-матри­цы.

Продуктами транскрипции в клетке являются иРНК. Сама клеточная ДНК, являющаяся носителем генети­ческой информации, не может непосредственно програм­мировать синтез белка. Передачу генетической информа­ции от ДНК к рибосомам осуществляет РНК-посредник. На этом основана центральная догма молекулярной биологии, которая выражается следующей формулой:

ДНК транскрипция РНК трансляция белок,

где стрелки показывают направление переноса генети­ческой информации.

Реализация генетической информации у вирусов. Стра­тегия вирусного генома в отношении синтеза иРНК у разных вирусов различна. У ДНК-содержащих вирусов иРНК синтезируется на матрице одной из нитей ДНК. Формула переноса генетической информации у них такая же, как и в клетке:

ДНК транскрипция РНК трансляция белок.

ДНК-содержащие вирусы, репродукция которых происхо­дит в ядре, используют для транскрипции клеточную полимеразу. К этим вирусам относятся паповавирусы, аденовирусы, вирусы герпеса. ДНК-содержащие вирусы, репродукция которых происходит в цитоплазме, не могут использовать клеточный фермент, находящийся в ядре. Транскрипция их генома осуществляется вирусспецифическим ферментом — ДНК-полимеразой, которая прони­кает в клетку в составе вируса. К этим вирусам относятся вирусы оспы и иридовирусы.

РНК-содержащие вирусы, у которых хранителем генетической информации является не ДНК, а РНК, решают эту проблему особым образом. У РНК-содержащих «плюс»-нитевых вирусов, у которых функции иРНК выполняет сам геном, передача генетической информации осуществляется по наиболее простой формуле:

РНК белок.

К этой группе вирусов относятся пикорнавирусы, тогавирусы, коронавирусы. У них нет необходимости в акте транскрипции для синтеза вирусспецифических белков. Поэтому транскрипцию как самостоятельный процесс у этих вирусов не выделяют.

Иначе дело обстоит у вирусов, геном которых не может выполнять функцию иРНК. В клетке синтезируется комплементарная геному РНК, которая и является информационной. Передача генети­ческой информации у этих вирусов осуществляется по формуле:

РНК - РНК белок

У этих вирусов транскрипция выделена как самостоя­тельный процесс в инфекционном цикле. К ним относятся две группы вирусов животных.

1. Вирусы, геном которых представлен однонитчатой РНК: ортомиксовирусы, парамиксовирусы, рабдовирусы, буньявирусы. Поскольку геномная РНК этих вирусов является «минус»-нитью, указанную группу вирусов назы­вают «минус»-нитевыми вирусами.

2. Вирусы, геном которых представлен двунитчатой РНК (диплоРНК-вирусы). Среди вирусов животных к ним относятся реовирусы.

В клетке нет фермента, который может полимеризовать нуклеотиды на матрицеРНК. Эту функцию выпол­няет вирусспецифический фермент — РНК-полимераза, или транскриптаза, которая находится в составе вирусов и вместе с ними проникает в клетку.

Среди РНК-содержащих вирусов животных есть семейство ретровирусов, которые имеют уникальный путь передачи генетической информации. РНК этих вирусов переписывается на ДНК, ДНК интегрирует с клеточным геномом и в его составе переписывается на РНК, которая обладает информационными функциями. Путь передачи генетической информации в этом случае осуществляется по более сложной формуле:

РНК - ДНК РНК белок

В составе этих вирусов есть уникальный вирусспецифи­ческий фермент, который переписывает РНК на ДНК. Этот процесс называется обратной транскрипцией, а фер­мент — обратная транскриптаза, или ревертаза. Тот же фермент синтезирует нить ДНК на матрице ДНК. Дву­нитчатая ДНК после замыкания в кольцо интегрирует с клеточным геномом, и транскрипцию интегрированной ДНК в составе клеточных геномов осуществляет кле­точная РНК-полимераза. Поскольку иРНК ретровирусов гомологична геномной РНК (а не комплементарна ей), ретровирусы являются «плюс»-нитевыми вирусами.

Ферменты, транскрибирующие вирусный геном. Тран­скрипция ряда ДНК-содержащих вирусов — паповавирусов, аденовирусов, вирусов герпеса, парвовирусов, гепаднавирусов Осуществляется в ядре клетки, и в этом процессе широко используются механизмы клеточной транскрип­ции — ферменты транскрипции и дальнейшей модифи­кации транскриптов. Транскрипция этих вирусов осуще­ствляется клеточной РНК-полимеразой II — ферментом, который осуществляет транскрипцию клеточного генома. Однако особая группа транскриптов аденовируса синте­зируется с помощью другого клеточного фермента — РНК-полимеразы III. У двух других семейств ДНК-содер­жащих вирусов животных — вирусов оспы и иридовирусов — транскрипция происходит в цитоплазме. По­скольку в цитоплазме нет клеточных полимераз, тран­скрипция этих вирусов нуждается в специальном вирус­ном ферменте — вирусной РНК-полимеразе. Этот фермент является структурным вирусным белком.

У РНК-содержащих вирусов транскрипция осуще­ствляется вирус-специфическими транскриптазами, т. е. ферментами, закодированными в вирусном геноме. Вирусспецифические транскриптазы могут быть как структурными белками, входящими в состав вириона (эндогенная транскриптаза), так и неструктурными белками, которые синтезируются в зараженной клетке, но не включаются в вирион.

Транскрипция в зараженной клетке. Синтез компле­ментарных РНК на родительских матрицах с помощью родительской транскриптазы носит название первичной транскрипции в отличие от вторичной транскрипции, происходящей на более поздних стадиях инфекционного цикла на вновь синтезированных, дочерних матрицах, с помощью вновь синтезированной транскриптазы. Боль­шая часть иРНК в зараженной клетке является продуктом вторичной транскрипции.

Транскриптивные комплексы. У сложно устроенных РНК-содержащих вирусов животных транскрипция происходит не на матрице голой РНК, а в составе вирусных нуклеокапсидов или сердцевин (транскриптивные комплексы). Связанные с геномом капсидные белки не только не препятствуют транскрипции, но и необходи­мы для нее, обеспечивая правильную конформацию тяжа РНК, защиту его от клеточных протеаз, связь отдельных фрагментов генома друг с другом, а также регуляцию транскрипции.

Вновь синтезированные иРНК выходят из транскриптивных комплексов и транспортируются к рибосомам.

На модели реовирусов было показано, что обе нити двунитчатых молекул РНК остаются в составе сердцевины, а вновь синтезированные иРНК выталкиваются из серд­цевины через отверстия в 12 полых цилиндров, находящих­ся в составе сердцевины (рис. 11).

 
 

Рис. 11. Вытеснение вновь синтезированной РНК из сердцевины вирионов реовирусов. Вид в электронном микроскопе (а) и схема строения вирионов (б).

Регуляция транскрипции. Транскрипция вирусного генома строго регулируется на протяжении инфекцион­ного цикла. Регуляция осуществляется как клеточными, так и вирусспецифическими механизмами. У некоторых вирусов, в основном ДНК-содержащих, существует три периода транскрипций — сверхранняя, ранняя и поздняя. К этим вирусам относятся вирусы оспы, герпеса, паповавирусы, аденовирусы. В результате сверхранней и ран­ней транскрипции избирательно считываются сверхранние и ранние гены с образованием сверхранних или ранних иРНК. При поздней транскрипции считывается другая часть вирусного генома — поздние гены, с образованием поздних иРНК. Количество поздних генов обычно пре­вышает количество ранних генов. Многие сверхранние гены являются генами для неструктурных белков — фер­ментов и регуляторов транскрипции и репликации вирус­ного генома. Напротив, поздние гены обычно являются генами для структурных белков. Обычно при поздней транскрипции считывается весь геном, но с преоблада­нием транскрипции поздних генов.

Фактором регуляции транскрипции у ядерных вирусов является транспорт транскриптов из ядра в цитоплазму, к месту функционирования иРНК — полисомам.

Продуктом сверхранней транскрипции вирусов герпеса являются А-белки. Функция одного или нескольких из них необходима для транскрипции следующей группы генов, кодирующих Р-белки. В свою очередь Р-белки включают транскрипцию последней группы поздних генов, кодирующих У-белки. Такой тип регуляции получил название «каскадной».

У РНК-содержащих вирусов синтез транскриптов также строго контролируется в отношении как количества каждого класса транскриптов, так и периода инфекции, когда определенные транскрипты синтезируются с макси­мальной скоростью. На ранней стадии инфекции преиму­щественно синтезируются транскрипты двух генов вируса гриппа — NР и NS, на поздней стадии инфекции — транскрипты генов М, НА и NА. Остальные три гена для Р-белков синтезируются примерно с одинаковой скоростью на протяжении всего периода инфекции. У реовирусов на ранней стадии инфекции преимуществен­но транскрибируется 4 из 10 фрагментов генома и лишь на поздней стадии транскрибируется весь геном. Однако если поместить геном вируса в бесклеточную РНК-синтезирующую систему, будет происходить равномерная транскрипция всех 10 фрагментов генома. Эти факты говорят о жестком контроле транскрипции со стороны клетки-хозяина и возможном наличии специфических клеточных регуляторов.

У парамиксовирусов и рабдовирусов весь геном пред­ставляет собой одну транскрипционную единицу с един­ственным промотором (участок связывания транскриптазы и начала транскрипции) у 3'-конца. Вдоль генома суще­ствует как бы градиент эффективности транскрипции. Ближайший к 3'- концу ген (ген наиболее обильного белка КР) считывается наиболее часто. Напротив, ген для самого высокомолекулярного белка — транскрипта­зы,— содержащегося лишь в количестве нескольких моле­кул на вирион, находится на противоположном конце генома и транскрибируется значительно реже. Такая регуляция экспрессии генов путем порядка их располо­жения в геноме носит название «полярность». При этом способе регуляции количество молекул полипептидов определяется полярностью гена, т.е. расстоянием его от промотора.

ТРАНСЛЯЦИЯ

Синтез белка в клетке происходит в результате трансляции иРНК. Трансляцией называется процесс пере­вода генетической информации, содержащейся в иРНК, на специфическую последовательность аминокислот. Иными словами, в процессе трансляции осуществляется перевод 4-буквенного языка азотистых оснований на 20-буквенный язык аминокислот.

ТранспортныеРНК. Свою аминокислоту тРНК узнают по конфигурации ее боковой цепи, а специфический фермент аминоацил-синтетаза катализирует ассоциацию тРНК с аминокислотой. В клетке существует большое количество разнообразных видов тРНК. Поскольку для каждой аминокислоты должна быть своя тРНК, количе­ство видов тРНК должно быть не меньше 20, однако в клетке их значительно больше. Это связано с тем, что для каждой аминокислоты существует не один, а несколь­ко видов тРНК. Молекула тРНК представляет собой однонитчатую РНК со сложной структурой в виде клено­вого листа (рис. 12). Один ее конец связывается с амино­кислотой (конец а), а противоположный — с нуклеотидами иРНК, которым они комплементарны (конец б). Три нуклеотида на иРНК кодируют одну аминокислоту и называются «триплет» или «кодон», комплементарные кодону три нуклеотида на конце тРНК называются «антикодон».

 
 

Рис. 12. Строение транспортной РНК:

а - участок связывания с аминокислотой;

б - участок связывания с иРНК (антикодон).

Рибосомы. Синтез белка в клетке осуществляется на рибосоме. Рибосома состоит из двух субъединиц, большой и малой, малая субъединица примерно в два раза меньше большой. Обе субъединицы содержат по одной молекуле рибосомальной РНК и ряд белков. Рибосомальные РНК синтезируются в ядре на матрице ДНК с помощью РНК-полимеразы I. В малой рибосомальной субъединице есть канал, в котором находится информа­ционная РНК. В большой рибосомальной субъединице есть две полости, захватывающие также малую рибосомальную субъединицу. Одна из них содержит аминоацильный центр (А-центр), другая — пептидильный центр (П-центр) (рис. 13).


Рис. 13. Формирование и функционирование рибосомы:

1 - малая рибосомальная субъединица с присоединенной инициаторной метионил-тРНК;

2 - большая рибосомальная субъединица;

3 - инициаторный комплекс, содержащий малую рибосомальную субъединицу, метионил-тРНК и иРНК;

заштрихованные прямоугольники - белковые факторы инициации (9 факторов в эукариотических клетках);

4 - функционально активная рибосома: А — аминоацильный центр, П— пептидильный центр в большой рибосо­мальной субъединице;

5, 6, 7 - процесс элонгации полипептидной цепи; показан перенос аминоацил-тРНК между двумя центрами на большой рибосомальной субъединице, осуществляемый с помощью пептидил-трансферазы.

Фазы трансляции. Процесс трансляции состоит из трех фаз: 1) инициации, 2) элонгации и 3) терминации.

Инициация трансляции. Это наиболее ответ­ственный этап в процессе трансляции, основанный на узнавании рибосомой иРНК и связывании с ее особыми участками. Рибосома узнает иРНК благодаря «шапочке» на 5'-конце и скользит к 3'-концу, пока не достигнет инициаторного кодона, с которого начинается трансляция. В эукариотической клетке инициаторным кодоном являет­ся кодон АУГ или ГУГ, кодирующие метионин. С метионина начинается синтез всех полипептидных цепей.

В начале с иРНК связывается малая рибосомальная субъединица. К комплексу иРНК с малой рибосомальной субъединицей присоединяются другие компоненты, необ­ходимые для начала трансляции. Это несколько молекул белка, которые называются «инициаторные факторы». Их по крайней мере три в прокариотической клетке и более девяти в эукариотической клетке.

Инициаторные факторы определяют узнавание рибосомой специфических иРНК и, таким образом, являются определяющим фактором в дискриминации между различными иРНК, присутствующими в клетке, как правило, в избыточном количестве.

В результате формируется комплекс, необходимый для инициации трансляции, который называется инициа­торным комплексом. В инициаторный комплекс входят:

1) иРНК;

2) малая рибосомальная субъединица;

3) аминоацил-тРНК, несущая инициаторную аминокислоту;

4) инициаторные факторы;

5) несколько молекулГТФ.

В рибосоме осуществляется слияние потока информа­ции с потоком аминокислот. Аминоацил-тРНК входит в А-центр большой рибосомальной субъединицы, и ее антикодон взаимодействует с кодоном иРНК, находящей­ся в малой рибосомальной субъединице. При продвижении иРНК на один кодон тРНК перебрасывается в пептидиль­ный центр, и ее аминокислота присоединяется к ини­циаторной аминокислоте с образованием первой пептидной связи. Свободная от аминокислоты тРНК, выходит из рибосомы, и может опять функционировать в транспор­те специфических аминокислот. На ее место из А-центра в П-центр перебрасывается новая тРНК и образуется новая пептидная связь. В А-центре появляется вакантный кодон иРНК, к которому немедленно присоединяется соответствующая тРНК и происходит присоединение новых аминокислот к растущей полипептидной цепи (рис. 13).

Элонгация трансляции. Это процесс удлине­ния, наращивания полипептидной цепи, основанный на присоединении новых аминокислот с помощью пептидной связи. Происходит постоянное протягивание нити иРНК через рибосому и «декодирование» заложенной в ней генетической информации (рис. 14). иРНК функ­ционирует на нескольких рибосомах, каждая из которых синтезирует одну и ту же полипептидную нить, коди­руемую данной иРНК. Группа рибосом, работающих на одной молекуле иРНК, называется полирибосомой, или полисомой. Размер полисом значительно варьирует в зависимости от длины молекулы иРНК, а также от расстояния между рибосомами. Так, полисомы, которые синтезируют гемоглобин, состоят из 4-6 рибосом, высо­комолекулярные белки синтезируются на полирибосомах, содержащих 20 и более рибосом.

 
 

Рис. 14. Синтез белков на полисомах:

1 - большая рибосомальная субъединица;

2 - малая рибосомальная субъедини­ца;

3 - иРНК;

4 - растущая полипептидная нить.

Терминация трансляции. Терминация транс­ляции происходит в тот момент, когда рибосома доходит до терминирующего кодона в составе иРНК. Трансляция прекращается, и полипептидная цепь освобождается из полирибосомы. После окончания трансляции полири­босомы распадаются на субъединицы, которые могут войти в состав новых полирибосом.

Свойства полирибосом. По топографии в клетке полирибосомы делят на две большие группы — свободные и связанные с мембранами эндоплазматической сети, которые составляют соответственно 75 и 25 %.

Между двумя группами полирибосом нет принципиальных струк­турных и функциональных различий, они формируются из одного и того же пула субъединиц и в процессе транс­ляции могут обмениваться субъединицами. Мембраны, с которыми связаны полирибосомы, называются грубыми или шероховатыми мембранами в отличие от гладких мембран, не содержащих полирибосомы. Связь полири­босом с мембранами осуществляется с помощью сигналь­ного пептида — специфической последовательности на аминоконце синтезирующихся гликопротеидов. На связан­ных с мембранами полирибосомах синтезируются внутримембранные белки, которые, сразу же после синтеза, оказываются в составе мембран.

Трансляция в зараженных вирусом клетках. Стратегия вирусного генома, использующего клеточный аппарат трансляции, должна быть направлена на создание меха­низма для подавления трансляции собственных клеточных иРНК и для избирательной трансляции вирусных иРНК, которые всегда находятся в значительно меньшем коли­честве, чем клеточные матрицы. Этот механизм реали­зуется на уровне специфического узнавания малой рибосомальной субъединицей вирусных иРНК, т. е. на уровне формирования инициирующего комплекса. По­скольку многие вирусы не подавляют синтез клеточных иРНК, в зараженных клетках возникает парадоксальная ситуация: прекращается трансляция огромного фонда функционально активных клеточных иРНК, и на освобо­дившихся рибосомах начинается трансляция одиночных молекул вирусных иРНК. Специфическое узнавание рибосомой вирусных иРНК осуществляется за счет вирусспецифических инициаторных факторов.

Два способа формирования вирусных белков. По­скольку геном вируса животных представлен молекулой, кодирующей более чем один белок, вирусы поставлены перед необходимостью синтеза либо длинной иРНК, кодирующей один гигантский полипептид-предшественник, который затем должен быть нарезан в специфических точках на функционально активные белки, либо коротких моноцистронных иРНК, каждая из которых кодирует один белок.

Таким образом, существуют два способа формирования вирусных белков: 1) иРНК транслируется в гигантский полипептид-предшественник, который после синтеза последовательно нарезается на зрелые функцио­нально активные белки; 2) иРНК транслируется с обра­зованием зрелых белков, или белков, которые лишь незна­чительно модифицируются после синтеза.

Первый способ трансляции характерен для РНК-содержащих «плюс»-нитевых вирусов — пикорнавирусов и тогавирусов. Их иРНК транслируется в гигантскую полипептидную цепь, так называемый полипротеид, который сползает в виде непрерывной ленты с рибосомного «кон­вейера» и нарезается на индивидуальные белки нужного размера. Нарезание вирусных белков является много­ступенчатым процессом, осуществляемым как вирусспецифическими, так и клеточными протеазами. В клетках, зараженных пикорнавирусами, на конце полипротеина-предшественника находится белок с протеазной актив­ностью. Вирусная протеаза осуществляет нарезание предшественника на 3 фрагмента, один из которых являет­ся предшественником для структурных белков, второй — для неструктурных белков, функции третьего фрагмента неизвестны. В дальнейшем нарезании участвуют вирус-специфические и клеточные протеазы.

Интересный вариант первого способа трансляции обнаруживается у альфа-вирусов. Геномная РНК с коэффициентом седиментации 42 S транслируется с образованием полипептида-предшественника для неструктурных белков. Однако доминирующей в зараженных клетках иРНК является РНК с коэффи­циентом седиментации 26 S, составляющая одну треть геномной РНК. Эта иРНК транслируется с образованием предшественника для структурных белков.

Второй способ формирования белков характерен для ДНК-содержащих вирусов и большинства РНК-содержащих вирусов. При этом способе синтезируются короткие моноцистронные иРНК в результате избира­тельной транскрипции одного участка генома (гена). Однако все вирусы широко используют механизм пост­трансляционного нарезания белка.

Вирусспецифические полисомы. Поскольку длина ви­русныхиРНК варьирует в широких пределах, размер вирусспецифических полисом также широко варьирует: от 3-4 до нескольких десятков рибосом на одной нити иРНК. При инфекциях, вызванных пикорнавирусами, формируются крупные полисомы, представляющие собой агрегаты, состоящие из 20-60 рибосом. При инфекциях, вызванных другими вирусами животных, использующими второй способ трансляции, формируются полисомы не­большого размера. Между размерами иРНК и величиной полисом существует определенная корреляция, однако в ряде Случаев полисомы имеют больший или меньший размер по сравнению с ожидаемым. Эта особенность вирусных полисом объясняется необычным простран­ственным расположением рибосом на вирусных матрицах, связанных с меньшей плотностью упаковки рибосом на молекулеиРНК.

Вирусспецифические полисомы могут быть как сво­бодными, так и связанными с мембранами. В зараженных вирусом полиомиелита клетках полипротеид синтезируется на связанных с мембранами полисомах; при инфекциях, вызванных сложно устроенными вирусами, формируются как свободные, так и связанные с мембранами полисомы, которые вовлечены в синтез разных классов вирусных полипептидов. Внутренние белки обычно синтезируются на свободных полисомах, гликопротеиды всегда синте­зируются на полисомах, связанных с мембранами.

Модификация вирусных белков. В эукариотической клетке многие белки, в том числе вирусные, подвергаются посттрансляционным модификациям, и зрелые функцио­нально активные белки часто не идентичны их вновь синтезированным предшественникам. Широко распростра­нены такие посттрансляционные ковалентные модифика­ции, как гликозилирование, ацилирование, метилирование, сульфирование (образование дисульфидных связей), протеолитическое нарезание и, наконец, фосфорилирование. В результате вместо 20 генетически закодированных аминокислот из различных клеток разных органов эукариотов выделено около 140 дериватов аминокислот.

Среди широкого спектра модифицированных реакций лишь небольшое количество процессов является обрати­мыми:

1) фосфорилирование — дефосфорилирование;

2) ацилирование — деацилирование;

3) метилирование — деметилирование;

4) образование дисульфидных связей.

Среди подобных обратимых модификаций белков следует искать процессы, обусловливающие механизм регуляции актив­ности белков в эукариотической клетке.

Гликозилирование. В составе сложно устроенных РНК- и ДНК-содержащих вирусов имеются белки, содер­жащие ковалентно присоединенные боковые цепочки углеводов — гликопротеиды. Гликопротеиды расположе­ны в составе вирусных оболочек и находятся на поверхности вирусных частиц. Своей гидрофобной частью они погружены в двойной слой липидов, а некоторые гликопротеиды проникают через него и взаимодействуют с внутренним компонентом вируса. Гидрофиль­ная часть молекулы обращена наружу.

Синтез и внутриклеточный транспорт гликопротеидов характеризуется рядом особенностей, присущих клеточ­ным внутримембранным белкам. Их синтез осуществляется на полисомах, ассоциированных с мембранами, и белки сразу же после синтеза попадают в шероховатые мембраны, откуда транспортируются в мембраны эндоплазматической сети и в комплекс Гольджи, где происходит модификация и комплектование углеводной цепочки, а затем — в плазматическую мембрану в ряде случаев путем слияния с ней везикул комплекса Гольджи. Такой целена­правленный транспорт осуществляется благодаря имеющей­ся на аминоконце белка специфической последовательности из 20-30 аминокислот (сигнальному пептиду). Сигналь­ный пептид отрезается от белковой молекулы после того, как гликопротеид достигает плазматической мембра­ны.

Гликозилирование полипептидов является сложным многоступенчатым процессом, первые этапы которого начинаются уже в процессе синтеза полипептидов, и первый сахар присоединяется к полипептидной цепи, еще не сошедшей с рибосомы. Последующие этапы гликози-лирования происходят путем последовательного присоеди­нения Сахаров в виде блоков к углеводной цепочке в процессе транспорта полипептида к плазматической мембране.

Окончательное формирование углеводной цепочки может завершаться на плазматической мембране перед сборкой вирусной частицы. Процесс гликозилирования не влияет на транспорт полипептида к плазматической мембране, но имеет существенное значение для экспрес­сии биологической активности белка. При подавлении гликозилирования соответствующими ингибиторами (ана­логи сахаров типа 2-дезоксиглюкозы, антибиотик туникамицин) нарушается синтез полипептидов, блокируется сборка вирионов миксовирусов, рабдовирусов, альфа-вирусов или образуются неинфекционные вирионы герпеса и онковирусов.

Сульфирование. Некоторые белки сложно устроенных РНК- и ДНК-содержащих вирусов сульфируются после трансляции. Чаще всего сульфированию подвергаются гликопротеиды, при этом сульфатная группа связывается с сахарным компонентом гликопротеида.

Ацилирование. Ряд гликопротеидов сложно устроенных РНК-содержащих вирусов (НА2 вируса гриппа, белок G вируса везикулярного стоматита, белок НN вируса ньюкаслской болезни и др.) содержат ковалентно связан­ные 1-2 молекулы жирных кислот.

Нарезание. Многие вирусные белки ив первую очередь гликопротеиды приобретают функциональную активность лишь после того, как произойдет их нарезание в специфических точках протеолитическими ферментами. Нарезание происходит либо с образованием двух функцио­нальных белковых субъединиц (например, большая и малая субъединицы гемагглютинина вируса гриппа, два гликопротеида, E2 и Е3, вируса леса Семлики) либо с образованием одного функционально активного белка и неактивного фрагмента, например белки F и HN парамиксовирусов. Нарезание обычно осуществляется клеточными ферментами. У многих сложно устроенных вирусов животных, имеющих гликопротеид, нарезание необходимо для формирования активных прикрепительных белков и белков слияния и, следовательно, для приобретения вирусом способности инфицировать клетку. Лишь после нарезания этих белков вирусная частица приобретает инфекционную активность. Таким образом, можно говорить о протеолитической активации ряда вирусов, осуществляемой с помощью клеточных ферментов.

Фосфорилирование. Фосфорпротеиды содержатся прак­тически в составе всех вирусов животных, РНК- и ДНК-содержащих, просто и сложно устроенных. В составе большинства вирусов обнаружены протеинкиназы, однако фосфорилирование может осуществляться как вирусными, так и клеточными ферментами. Обычно фосфорилируются белки, связанные с вирусным геномом и осуществляющие регулирующую роль в его экспрессии.

С процессом фосфорилирования связан механизм антивирусного действия интерферона. В зараженных вирусом клетках интерферон индуцирует синтез протеинкиназы, которая фосфорилирует субъединицу инициирую­щего фактора трансляции ЭИФ-2, в результате чего блокируется трансляция вирусных информационных РНК. Фосфорилирование белков играет регулирующую роль в транскрипции и трансляции вирусных иРНК, специфическом узнавании вирусных иРНК рибосомой, белок-нуклеиновом и белок-белковом узнавании на стадии сборки вирусных частиц.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: