Разомкнутая система имеет передаточную функцию
.
Выяснить устойчивость замкнутой системы.
Характеристическое уравнение замкнутой системы
0,009p3 + 0,02p2 +1,1p + 10 = 0.
Комплексный частотный полином, нечетный и четный полиномы:
D(jw) = - j 0,009w3 – j 1,1w + 10 – 0,02 w2 ,
V(w) = 1,1w - 0,009w3,
U(w) = 10 – 0,02 w2 .
Частоты пересечения:
V(w) = 0, w1 = 0, w3 = 11,0 .
U(w) = 0, w2 = 22,4 .
Требование чередования частот при последовательном возрастании не выполняется:
w1 < w2 > w3 .
Следовательно, система неустойчива.
Подтверждение этому получим, вычислив значения угла поворота вектора D(jw) при частотах пересечения с осями. Запишем тангенс аргумента:
.
Вычисляем: ω1 = 0, tg φ = 0, φ1 = 0°.
ω2 = 22,4, tg φ = -¥, φ2 = -90°.
ω3 = 11,0 tg φ = 0,00, φ3 = 0°.
Угол φ не возрастает последовательно для каждой частоты пересечения. И не становится равным степени характеристического уравнения, умноженной на p/2.
Как выглядит годограф Михайлова, показано на рис. 5.7.
Таблица данных
V
ω | U | V |
9,5 | 4,4 | |
7,6 | ||
5,5 | -14 | |
22,4 | -76 |
0 5 10 U
-40
-60
Рис. 5.7
Кривая не охватывает начала координат. Система неустойчивая.
|