Катализ

Одним из наиболее распространенных в химической практике методов ускорения химических реакций является катализ. Катализатор - вещество, которое многократно участвует в промежуточных стадиях реакции, но выходит из нее химически неизменным.

Например, для реакции А2 + В2 = 2АВ

участие катализатора К можно выразить уравнением

А2 + К + В2 ® А2....К + В2 ® А2...К...В2 ® 2АВ + К.

Эти уравнения можно представить кривыми потенциальной энергии (рис. 5.2.).

Рис. 5.2. Энергетическая схема хода реакции

с катализатором и без катализатора

Из рисунка 5.2 видно, что:

1) катализатор уменьшает энергию активации, изменяя механизм реакции, – она протекает через новые стадии, каждая из которых характеризуется невысокой энергией активации;

2) катализатор не изменяет DН реакции (а также DG, DU и DS);

3) если катализируемая реакция обратимая, катализатор не влияет на равновесие, не изменяет константу равновесия и равновесные концентрации компонентов системы. Он в равной степени ускоряет и прямую, и обратную реакции, тем самым ускоряя время достижения равновесия.

Очевидно, в присутствии катализатора энергия активации реакции снижается на величину DЕк. Поскольку в выражении для константы скорости реакции (уравнение 5.10) энергия активации входит в отрицательный показатель степени, то даже небольшое уменьшение Еа вызывает очень большое увеличение скорости реакции: .

Влияние катализатора на снижение Еа можно показать на примере реакции распада иодида водорода:

2HI = H2 + I2.

    Еа, кДж/моль   DЕа (500К)
Без катализатора   -  
Катализатор Au     » 3·106
Катализатор Pt 59 109 » 1011

Таким образом, для рассматриваемой реакции уменьшение энергии

активации на 63 кДж, т.е. в 1,5 раза, соответствует повышению скорости реакции при 500 К более чем 106 раз.

Следует отметить, что предэкспоненциальный множитель каталитической реакции k01 не равен k0 и обычно значительно меньше, однако соответствующее уменьшение скорости далеко не компенсирует её увеличения за счёт Еа.

Пример 5. Энергия активации некоторой реакции в отсутствие катализатора равна 75,24 кДж/моль, а с катализатором - 50,14 кДж/моль. Во сколько раз возрастает скорость реакции в присутствии катализатора, если реакция протекает при 250 С, а предэкспоненциальный множитель в присутствии катализатора уменьшается в 10 раз.

Решение. Обозначим энергию активации реакции без катализатора через Еа, а в присутствии катализатора - через Еа1; соответствующие константы скоростей реакций обозначим через k и k1. Используя уравнение Аррениуса (5.9) (см. раздел 5.3) и принимая k01/k0 = 10, находим:

Отсюда

Окончательно находим:

Таким образом, снижение энергии активации катализатором на 25,1 кДж привело к увеличению скорости реакции в 2500 раз, несмотря на 10-кратное уменьшение предэкспоненциального множителя.

Каталитические реакции классифицируются по типу катализаторов и по типу реакций. Так, например, по агрегатному состоянию катализаторов и реагентов катализ подразделяется на гомогенный (катализатор и реагент образуют одну фазу) и гетерогенный (катализатор и реагенты – в разных фазах, имеется граница раздела фаз между катализатором и реагентами).

Примером гомогенного катализа может быть окисление СО до СО2 кислородом в присутствии NO2 (катализатор). Механизм катализа можно изобразить следующими реакциями:

CO(г) + NO2(г) ® CO2(г) + NO(г) ,

2NO(г) + O2(г) ® 2NO2(г);

и катализатор (NO2) снова участвует в первой реакции.

Аналогично этому может быть катализирована реакция окисления SO2 в SO3; подобная реакция применяется в производстве серной кислоты "нитрозным" способом.

Примером гетерогенного катализа является получение SO3 из SO2 в присутствии Pt или V2O5:

SO2(г) + O2(г) ® SO3(г).

Эта реакция также применяется в производстве серной кислоты ("контактный" метод).

Гетерогенный катализатор (железо) применяется также в производстве аммиака из азота и водорода и во многих других процессах.

Эффективность гетерогенных катализаторов обычно намного больше, чем гомогенных. Скорость каталитических реакций в случае гомогенного катализатора зависит от его концентрации, а в случае гетерогенного - от его удельной поверхности (то есть дисперсности) - чем она больше, тем больше скорость. Последнее связано с тем, что каталитическая реакция идет на поверхности катализатора и включает в себя стадии адсорбции (прилипание) молекул реагентов на поверхности; по окончании реакции ее продукты десорбируются. Для увеличения поверхности катализаторов их измельчают или получают специальными способами, при которых образуются очень тонкодисперсные порошки.

Приведенные примеры одновременно являются примерами окислительно-восстановительного катализа. В этом случаев качестве катализаторов обычно выступают переходные металлы или их соединения (Mn3+, Pt, Au, Ag, Fe, Ni, Fe2O3 и др.).

В кислотно-основном катализе роль катализатора выполняют Н+, ОН- и другие подобные частицы - носители кислотности и основности. Так, реакция гидролиза

CH3COOCH3 + H2O CH3COOH + CH3OH

ускоряется примерно в 300 раз при добавлении любой из сильных кислот: HCl, HBr или HNO3.

Большое значение катализ имеет в биологических системах. В этом случае катализатор называют ферментом. Эффективность действия многих ферментов намного больше, чем обычных катализаторов. Например, для реакции связывания азота в аммиак

N2 + 3H2 = 2NH3

в промышленности используется гетерогенный катализатор в виде губчатого железа с добавками оксидов и сульфатов металлов.

При этом реакция проводится при Т» 700 К и Р» 30 МПа. Этот же синтез идет в клубеньках бобовых растений под действием ферментов при обычных Т и Р.

Каталитические системы небезразличны к примесям и добавкам. Некоторые из них увеличивают эффективность катализа, как например, в вышеприведенном примере катализа синтеза аммиака железом. Такие добавки в катализатор называются промоторами (оксиды калия и алюминия в железе). Некоторые примеси, наоборот, подавляют каталитическую реакцию ("отравляют" катализатор), это каталитические яды. Например, синтез SO3 на Pt-катализаторе очень чувствителен к примесям, содержащим сульфидную серу; сера отравляет поверхность платинового катализатора. И напротив, катализатор на основе V2O5 малочувствителен к таким примесям; честь разработки катализатора на основе оксида ванадия принадлежит российскому учёному Г.К. Борескову.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: