Определение повторного интеграла

Определение двойного интеграла, его свойства.

Лекция № 24.

Кратные интегралы.

Как известно, интегрирование является процессом суммирования. Однако суммирование может производится неоднократно, что приводит нас к понятию кратных интегралов. Рассмотрение этого вопроса начнем с рассмотрения двойных интегралов.

Двойные интегралы.

Рассмотрим на плоскости некоторую замкнутую кривую, уравнение которой

f(x, y) = 0.

y

0 x

Совокупность всех точек, лежащих внутри кривой и на самой кривой назовем замкнутой областью D. Если выбрать точки области без учета точек, лежащих на кривой, область будет называется незамкнутой область D.

С геометрической точки зрения D - площадь фигуры, ограниченной контуром.

Разобьем область D на n частичных областей сеткой прямых, отстоящих друг от друга по оси х на расстояние Dхi, а по оси у – на Dуi. Вообще говоря, такой порядок разбиения наобязателен, возможно разбиение области на частичные участки произвольной формы и размера.

Получаем, что площадь S делится на элементарные прямоугольники, площади которых равны Si = Dxi × Dyi.

В каждой частичной области возьмем произвольную точку Р(хi, yi) и составим интегральную сумму

где f – функция непрерывная и однозначная для всех точек области D.

Если бесконечно увеличивать количество частичных областей Di, тогда, очевидно, площадь каждого частичного участка Si стремится к нулю.

Определение: Если при стремлении к нулю шага разбиения области D интегральные суммы имеют конечный предел, то этот предел называется двойным интегралом от функции f(x, y) по области D.

С учетом того, что Si = Dxi × Dyi получаем:

В приведенной выше записи имеются два знака S, т.к. суммирование производится по двум переменным х и у.

Т.к. деление области интегрирования произвольно, также произволен и выбор точек Рi, то, считая все площади Si одинаковыми, получаем формулу:

Условия существования двойного интеграла.

Сформулируем достаточные условия существования двойного интеграла.

Теорема. Если функция f(x, y) непрерывна в замкнутой области D, то двойной интеграл существует.

Теорема. Если функция f(x, y) ограничена в замкнутой области D и непрерывна в ней всюду, кроме конечного числа кусочно – гладких линий, то двойной интеграл существует.

Свойства двойного интеграла.

1)

2)

3) Если D = D1 + D2, то

4) Теорема о среднем. Двойной интеграл от функции f(x, y) равен произведению значения этой функции в некоторой точке области интегрирования на площадь области интегрирования.

5) Если f(x, y) ³ 0 в области D, то .

6) Если f1(x, y) £ f2(x, y), то .

7) .

Вычисление двойного интеграла.

Теорема. Если функция f(x, y) непрерывна в замкнутой области D, ограниченной линиями х = a, x = b, (a < b), y = j(x), y = y(x), где j и y - непрерывные функции и

j £ y, тогда

y y = y(x)

 
 


D

y = j(x)

a b x

Пример. Вычислить интеграл , если область D ограничена линиями: y = 0, y = x2, x = 2.

y

D

0 2 x

=

=

Теорема. Если функция f(x, y) непрерывна в замкнутой области D, ограниченной линиями y = c, y = d (c < d), x = F(y), x = Y(y) (F(y) £ Y(y)), то

Пример. Вычислить интеграл , если область D ограничена линиями y = x, x = 0, y = 1, y = 2.

y

 
 


y = x

D

0 x

Пример. Вычислить интеграл , если область интегрирования D ограничена линиями х = 0, х = у2, у = 2.

=

=

Пример. Вычислить двойной интеграл , если область интегрирования ограничена линиями ху=1, у = , х = 2.

1.

2.

3.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: