Рис. 5. Мутационная модель прогрессирования колоректального рака под воздействием Fusobacterium nucleatum

Рис. 5. Мутационная модель прогрессирования колоректального рака под воздействием Fusobacterium nucleatum.

В нормальной клетке уровеньаннексина А1 (ANXA1) низкий, степень связывания адгезина FadA с E-кадгерином (CDH1) слабая. В клетках опухоли уровень аннексина А1 значительно возрастает, усиливается степень связывания FadA с E-кадгерином, в результате чего формируется комплекс FadA-E-кадгерин-Аннексин А1-β-катенин, активация β-катенина приводит к прогрессированию опухоли.

КМ – клеточная мембрана.

Криптоспоридиоз - паразитарное заболевание, вызываемое протистами рода Cryptosporidium из типа Апикомлекс - может быть связан с колоректальными злокачественными новообразованиями, аденокарциномой желудочно-кишечного тракта. Кроме того, сообщалось, что Cryptosporidium parvum является одним из инфекционных агентов, которые могут вызывать дисплазию кишечника138. В большинстве случаев криптоспоридиоз представляет опасность для детей до 2-х лет, пациентов с иммунодефицитными состояниями и получающих длительную иммуносупрессивную терапию. Именно поэтому для снижения риска заражения криптоспоридиозом необходимо осуществлять обеззараживание сточных вод, кипячение водопроводной воды, установку дополнительных фильтров для очистки воды, а также соблюдать противоэпидемический режим в детских и лечебных учреждениях, а также меры личной гигиены.

Выводы.

Таким образом, принимая во внимание генетические факторы риска и факторы воздействия окружающей среды, в дальнейшем необходимо разработать индивидуальные меры по предотвращению заболеваемости онкологическими заболеваниями. Для этого следует:

1) выявить новые генетические и экологические факторы риска злокачественных новообразований, а также понимать процессы взаимодействия генетической информации и окружающей среды;

2) полноценно изучить процесс предраковых изменений и их прогрессирование в рак, молекулярные сигнатуры повреждения и восстановления ДНК, которым подверглись раковые клетки и их предшественники;

3) разработать более точные индивидуальные тесты оценки риска возникновения опухолей, что позволит пациентам получать наиболее подходящую медицинскую помощь для контроля этого риска;

4) более детально изучить технологии редактирования генома (например, CRISPR / Cas9), что позволит ускорить процесс исследования онкопатологии, являясь эффективной технологией для анализа механизмов канцерогенеза, определения мишеней для разработки лекарств и, возможно, подготовки специальных клеток для клеточной терапии;

5) определить новые подходы к профилактике онкологических заболеваний и усовершенствовать существующие, а именно:

-агитировать население вести здоровый образ жизни (заниматься спортом; придерживаться диеты, богатой фруктами, овощами, клетчаткой, с небольшим количеством красного мяса; отказаться от курения и употребления алкоголя),

-вести просветительскую работу о влиянии факторов риска на возникновение онкологических заболеваний, осуществлять консультативные мероприятия для обучения населения грамотному использованию контрацептивов и гормональной терапии,

-проводить профилактику инфекционных заболеваний (вовремя изолировать больного человека от общества и применять должную терапию; чаще проводить профилактические обследования; вакцинировать людей, оказавшихся в группе риска),

-изобрести новые методы профилактики инфекционных и паразитарных заболеваний,

-изучить влияние микробиоты на риск возникновения опухолей и регулировать видовое разнообразие и соотношение с помощью новых пробиотиков или трансплантации фекальной микробиоты,

-выявить новые канцерогенные химические агенты или убедиться в безопасности ныне известных веществ,

-постоянно внедрять новые технологии для улучшения процесса скрининга как для профилактики, так и для раннего выявления злокачественных новообразований.

 

Список литературы:

 

1. https://www.who.int/ru/news-room/fact-sheets/detail/cancer.

2. Zaridze, D. G. & Maksimovich, D. M. Prevention of malignant neoplasms. Usp. mol. onkol 4, 8–25 (2017).

3. Zaridze D.G. Cancer profylactics. Guidelines for doctors. (IMA-PRESS, 2009).

4. Feng, Y.-L. et al. Dietary patterns and colorectal cancer risk: a meta-analysis. European Journal of Cancer Prevention 26, 201–211 (2017).

5. Wolk, A. Potential health hazards of eating red meat. J Intern Med 281, 106–122 (2017).

6. Ishikawa, S., Tamaki, S., Ohata, M., Arihara, K. & Itoh, M. Heme induces DNA damage and hyperproliferation of colonic epithelial cells via hydrogen peroxide produced by heme oxygenase: A possible mechanism of heme-induced colon cancer. Mol. Nutr. Food Res. NA-NA (2010) doi:10.1002/mnfr.200900348.

7. Knöbel, Y. et al. Ferric iron is genotoxic in non-transformed and preneoplastic human colon cells. Food and Chemical Toxicology 45, 804–811 (2007).

8. Hebels, D. G. A. J. et al. Red meat intake-induced increases in fecal water genotoxicity correlate with pro-carcinogenic gene expression changes in the human colon. Food and Chemical Toxicology 50, 95–103 (2012).

9. O’Callaghan, N. J. et al. Colonocyte telomere shortening is greater with dietary red meat than white meat and is attenuated by resistant starch. Clinical Nutrition 31, 60–64 (2012).

10. Turesky, R. J. Mechanistic Evidence for Red Meat and Processed Meat Intake and Cancer Risk: A Follow-up on the International Agency for Research on Cancer Evaluation of 2015. Chimia (Aarau) 72, 718–724 (2018).

11. Gottschalg, E., Scott, G. B., Burns, P. A. & Shuker, D. E. G. Potassium diazoacetate-induced p53 mutations in vitro in relation to formation of O6-carboxymethyl- and O6-methyl-2’-deoxyguanosine DNA adducts: relevance for gastrointestinal cancer. Carcinogenesis 28, 356–362 (2007).

12. Toden, S., Belobrajdic, D. P., Bird, A. R., Topping, D. L. & Conlon, M. A. Effects of Dietary Beef and Chicken With and Without High Amylose Maize Starch on Blood Malondialdehyde, Interleukins, IGF-I, Insulin, Leptin, MMP-2, and TIMP-2 Concentrations in Rats. Nutrition and Cancer 62, 454–465 (2010).

13. Morze, J. et al. An updated systematic review and meta-analysis on adherence to mediterranean diet and risk of cancer. Eur J Nutr 60, 1561–1586 (2021).

14. Gianfredi, V. et al. Is dietary fibre truly protective against colon cancer? A systematic review and meta-analysis. International Journal of Food Sciences and Nutrition 69, 904–915 (2018).

15. Zhang, K., Dai, H., Liang, W., Zhang, L. & Deng, Z. Fermented dairy foods intake and risk of cancer: Fermented dairy foods and cancer risk. Int. J. Cancer 144, 2099–2108 (2019).

16. Alicandro, G., Tavani, A. & La Vecchia, C. Coffee and cancer risk: a summary overview. European Journal of Cancer Prevention 26, 424–432 (2017).

17. Bravi, F., Bosetti, C., Tavani, A., Gallus, S. & La Vecchia, C. Coffee Reduces Risk for Hepatocellular Carcinoma: An Updated Meta-analysis. Clinical Gastroenterology and Hepatology 11, 1413-1421.e1 (2013).

18. Godos, J. et al. Coffee Consumption and Risk of Biliary Tract Cancers and Liver Cancer: A Dose–Response Meta-Analysis of Prospective Cohort Studies. Nutrients 9, 950 (2017).

19. Filippini, T. et al. Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database of Systematic Reviews (2020) doi:10.1002/14651858.CD005004.pub3.

20. Tsilimigras, M. C. B., Fodor, A. & Jobin, C. Carcinogenesis and therapeutics: the microbiota perspective. Nat Microbiol 2, 17008 (2017).

21. Boursi, B., Mamtani, R., Haynes, K. & Yang, Y.-X. Recurrent antibiotic exposure may promote cancer formation – Another step in understanding the role of the human microbiota? European Journal of Cancer 51, 2655–2664 (2015).

22. Yang, Y. & Jobin, C. Novel insights into microbiome in colitis and colorectal cancer. Current Opinion in Gastroenterology 33, 422–427 (2017).

23. Lu, Y. et al. Mucosal adherent bacterial dysbiosis in patients with colorectal adenomas. Sci Rep 6, 26337 (2016).

24. Wong, S. H. et al. Gavage of Fecal Samples From Patients With Colorectal Cancer Promotes Intestinal Carcinogenesis in Germ-Free and Conventional Mice. Gastroenterology 153, 1621-1633.e6 (2017).

25. Purcell, R. V. et al. Colonization with enterotoxigenic Bacteroides fragilis is associated with early-stage colorectal neoplasia. PLoS ONE 12, e0171602 (2017).

26. Mangerich, A. et al. Infection-induced colitis in mice causes dynamic and tissue-specific changes in stress response and DNA damage leading to colon cancer. Proceedings of the National Academy of Sciences 109, E1820–E1829 (2012).

27. Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β‐catenin modulator Annexin A1. EMBO Rep 20, (2019).

28. Arthur, J. C. et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat Commun 5, 4724 (2014).

29. Helmink, B. A., Khan, M. A. W., Hermann, A., Gopalakrishnan, V. & Wargo, J. A. The microbiome, cancer, and cancer therapy. Nat Med 25, 377–388 (2019).

30. Tomkovich, S. et al. Locoregional Effects of Microbiota in a Preclinical Model of Colon Carcinogenesis. Cancer Res 77, 2620–2632 (2017).

31. He, Z. et al. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut 68, 289–300 (2019).

32. Mima, K. et al. The microbiome and hepatobiliary-pancreatic cancers. Cancer Letters 402, 9–15 (2017).

33. García-Castillo, V., Sanhueza, E., McNerney, E., Onate, S. A. & García, A. Microbiota dysbiosis: a new piece in the understanding of the carcinogenesis puzzle. Journal of Medical Microbiology 65, 1347–1362 (2016).

34. Yoshimoto, S. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97–101 (2013).

35. Ma, C. et al. Gut microbiome–mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360, eaan5931 (2018).

36. Seki, E. et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat Med 13, 1324–1332 (2007).

37. The Intestinal Microbiome and Estrogen Receptor–Positive Female Breast Cancer. JNCI: Journal of the National Cancer Institute (2016) doi:10.1093/jnci/djw029.

38. Duarte, L. et al. Polyphenols and their anti-obesity role mediated by the gut microbiota: a comprehensive review. Rev Endocr Metab Disord 22, 367–388 (2021).

39. Shapira, I., Sultan, K., Lee, A. & Taioli, E. Evolving Concepts: How Diet and the Intestinal Microbiome Act as Modulators of Breast Malignancy. ISRN Oncology 2013, 1–10 (2013).

40. Vivarelli, S. et al. Gut Microbiota and Cancer: From Pathogenesis to Therapy. Cancers 11, 38 (2019).

41. Yang, L. et al. Inflammation and Intestinal Metaplasia of the Distal Esophagus Are Associated With Alterations in the Microbiome. Gastroenterology 137, 588–597 (2009).

42. Gall, A. et al. Bacterial Composition of the Human Upper Gastrointestinal Tract Microbiome Is Dynamic and Associated with Genomic Instability in a Barrett’s Esophagus Cohort. PLoS ONE 10, e0129055 (2015).

43. Oliveira, S., Costa, J., Faria, I., Guerreiro, S. G. & Fernandes, R. Vitamin A Enhances Macrophages Activity Against B16-F10 Malignant Melanocytes: A New Player for Cancer Immunotherapy? Medicina 55, 604 (2019).

44. Wang, Q. & He, C. Dietary vitamin A intake and the risk of ovarian cancer: a meta-analysis. Bioscience Reports 40, BSR20193979 (2020).

45. Zhang, X., Dai, B., Zhang, B. & Wang, Z. Vitamin A and risk of cervical cancer: A meta-analysis. Gynecologic Oncology 124, 366–373 (2012).

46. Yu, N., Su, X., Wang, Z., Dai, B. & Kang, J. Association of Dietary Vitamin A and β-Carotene Intake with the Risk of Lung Cancer: A Meta-Analysis of 19 Publications. Nutrients 7, 9309–9324 (2015).

47. Omenn, G. S. et al. Effects of a Combination of Beta Carotene and Vitamin A on Lung Cancer and Cardiovascular Disease. N Engl J Med 334, 1150–1155 (1996).

48. Rowles, J. L., Ranard, K. M., Smith, J. W., An, R. & Erdman, J. W. Increased dietary and circulating lycopene are associated with reduced prostate cancer risk: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis 20, 361–377 (2017).

49. de La Puente-Yagüe, M., Cuadrado-Cenzual, M. A., Ciudad-Cabañas, M. J., Hernández-Cabria, M. & Collado-Yurrita, L. Vitamin D: And its role in breast cancer. The Kaohsiung Journal of Medical Sciences 34, 423–427 (2018).

50. Dzik, K. P. & Kaczor, J. J. Mechanisms of vitamin D on skeletal muscle function: oxidative stress, energy metabolism and anabolic state. Eur J Appl Physiol 119, 825–839 (2019).

51. Estébanez, N., Gómez-Acebo, I., Palazuelos, C., Llorca, J. & Dierssen-Sotos, T. Vitamin D exposure and Risk of Breast Cancer: a meta-analysis. Sci Rep 8, 9039 (2018).

52. Hossain, S. et al. Vitamin D and breast cancer: A systematic review and meta-analysis of observational studies. Clinical Nutrition ESPEN 30, 170–184 (2019).

53. Kozarski, M. et al. Antioxidants of Edible Mushrooms. Molecules 20, 19489–19525 (2015).

54. Miyazawa, T., Burdeos, G. C., Itaya, M., Nakagawa, K. & Miyazawa, T. Vitamin E: Regulatory Redox Interactions: VITAMIN E: REGULATORY REDOX INTERACTIONS. IUBMB Life 71, 430–441 (2019).

55. Shlapakova, T. I., Kostin, R. K. & Tyagunova, E. E. Reactive Oxygen Species: Participation in Cellular Processes and Progression of Pathology. Russ J Bioorg Chem 46, 657–674 (2020).

56. Lin, J.-H., Chen, S.-J., Liu, H., Yan, Y. & Zheng, J.-H. Vitamin E consumption and the risk of bladder cancer: A meta-analysis of prospective studies. International Journal for Vitamin and Nutrition Research 89, 168–175 (2019).

57. Moosavian, S. P., Arab, A., Mehrabani, S., Moradi, S. & Nasirian, M. The effect of omega-3 and vitamin E on oxidative stress and inflammation: Systematic review and meta-analysis of randomized controlled trials. International Journal for Vitamin and Nutrition Research 90, 553–563 (2020).

58. Harvie, M. Nutritional Supplements and Cancer: Potential Benefits and Proven Harms. American Society of Clinical Oncology Educational Book e478–e486 (2014) doi:10.14694/EdBook_AM.2014.34.e478.

59. Dong, Y. et al. Link between risk of colorectal cancer and serum vitamin E levels: A meta-analysis of case–control studies. Medicine 96, e7470 (2017).

60. Nimptsch, K., Rohrmann, S., Kaaks, R. & Linseisen, J. Dietary vitamin K intake in relation to cancer incidence and mortality: results from the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Heidelberg). The American Journal of Clinical Nutrition 91, 1348–1358 (2010).

61. Kuriyama, S. et al. Vitamins K2, K3 and K5 exert in vivo antitumor effects on hepatocellular carcinoma by regulating the expression of G1 phase-related cell cycle molecules. Int J Oncol 27, 505–511 (2005).

62. Ogawa, M. et al. Vitamins K2, K3 and K5 exert antitumor effects on established colorectal cancer in mice by inducing apoptotic death of tumor cells. Int J Oncol 31, 323–331 (2007).

63. Linsalata, M. et al. Inhibitory effect of vitamin K1 on growth and polyamine biosynthesis of human gastric and colon carcinoma cell lines. International Journal of Oncology 47, 773–781 (2015).

64. Kitagawa, J. et al. Synergistic growth inhibition in HL-60 cells by the combination of acyclic retinoid and vitamin K2. J Cancer Res Clin Oncol 137, 779–787 (2011).

65. Shah, M. et al. Inhibition of Siah2 ubiquitin ligase by vitamin K3 (menadione) attenuates hypoxia and MAPK signaling and blocks melanoma tumorigenesis. Pigment Cell & Melanoma Research 22, 799–808 (2009).

66. Dahlberg, S., Ede, J. & Schött, U. Vitamin K and cancer. Scandinavian Journal of Clinical and Laboratory Investigation 77, 555–567 (2017).

67. Bae, J.-M. Serum Folate Levels and Lung Cancer Risk: A Meta- Epidemiological Study of Population-based Case-Control Studies. Asian Pac J Cancer Prev 21, 1829–1833 (2020).

68. Saito, M., Kato, H., Tsuchida, T. & Konaka, C. Chemoprevention Effects on Bronchial Squamous Metaplasia by Folate and Vitamin in Heavy Smokers. Chest 106, 496–499 (1994).

69. Qiang, Y. et al. Intake of Dietary One-Carbon Metabolism-Related B Vitamins and the Risk of Esophageal Cancer: A Dose-Response Meta-Analysis. Nutrients 10, 835 (2018).

70. Zhang, S.-L. et al. Effect of vitamin B supplementation on cancer incidence, death due to cancer, and total mortality: A PRISMA-compliant cumulative meta-analysis of randomized controlled trials. Medicine 95, e3485 (2016).

71. Ren, X. et al. Association of folate intake and plasma folate level with the risk of breast cancer: a dose-response meta-analysis of observational studies. Aging 12, 21355–21375 (2020).

72. Zhao, Y. et al. Folate intake, serum folate levels and esophageal cancer risk: an overall and dose-response meta-analysis. Oncotarget 8, 10458–10469 (2017).

73. Moazzen, S. et al. Folic acid intake and folate status and colorectal cancer risk: A systematic review and meta-analysis. Clinical Nutrition 37, 1926–1934 (2018).

74. Fakhri, G., Al Assaad, M. & Tfayli, A. Association of various dietary habits and risk of lung cancer: an updated comprehensive literature review. Tumori 106, 445–456 (2020).

75. Harris, H. R., Orsini, N. & Wolk, A. Vitamin C and survival among women with breast cancer: A Meta-analysis. European Journal of Cancer 50, 1223–1231 (2014).

76. Lee, S. J. et al. Effect of High-dose Vitamin C Combined With Anti-cancer Treatment on Breast Cancer Cells. Anticancer Res 39, 751–758 (2019).

77. Kaźmierczak-Barańska, J., Boguszewska, K., Adamus-Grabicka, A. & Karwowski, B. T. Two Faces of Vitamin C—Antioxidative and Pro-Oxidative Agent. Nutrients 12, 1501 (2020).

78. Asaduzzaman Khan, Md., Tania, M., Zhang, D. & Chen, H. Antioxidant enzymes and cancer. Chin. J. Cancer Res. 22, 87–92 (2010).

79. Pawlowska, E., Szczepanska, J. & Blasiak, J. Pro- and Antioxidant Effects of Vitamin C in Cancer in correspondence to Its Dietary and Pharmacological Concentrations. Oxidative Medicine and Cellular Longevity 2019, 1–18 (2019).

80. Vinceti, M. et al. Selenium for preventing cancer. Cochrane Database of Systematic Reviews (2018) doi:10.1002/14651858.CD005195.pub4.

81. Sayehmiri, K., Azami, M., Mohammadi, Y., Soleymani, A. & Tardeh, Z. The Association between Selenium and Prostate Cancer: a Systematic Review and Meta-Analysis. Asian Pac J Cancer Prev 19, (2018).

82. Fallah Yekta, M. et al. A case–control study on dietary calcium intake and risk of glioma. European Journal of Cancer Prevention 30, 322–327 (2021).

83. Mokbel, K. & Mokbel, K. Chemoprevention of Breast Cancer With Vitamins and Micronutrients: A Concise Review. In Vivo 33, 983–997 (2019).

84. Wang, Y., Cui, R., Xiao, Y., Fang, J. & Xu, Q. Effect of Carotene and Lycopene on the Risk of Prostate Cancer: A Systematic Review and Dose-Response Meta-Analysis of Observational Studies. PLoS ONE 10, e0137427 (2015).

85. Schwingshackl, L. et al. Dietary Supplements and Risk of Cause-Specific Death, Cardiovascular Disease, and Cancer: A Systematic Review and Meta-Analysis of Primary Prevention Trials. Adv Nutr 8, 27–39 (2017).

86. Haykal, T. et al. Safety and efficacy of aspirin for primary prevention of cancer: a meta-analysis of randomized controlled trials. J Cancer Res Clin Oncol 145, 1795–1809 (2019).

87. Tomić, T., Domínguez-López, S. & Barrios-Rodríguez, R. Non-aspirin non-steroidal anti-inflammatory drugs in prevention of colorectal cancer in people aged 40 or older: A systematic review and meta-analysis. Cancer Epidemiology 58, 52–62 (2019).

88. Campbell, J. P. & Turner, J. E. Debunking the Myth of Exercise-Induced Immune Suppression: Redefining the Impact of Exercise on Immunological Health Across the Lifespan. Front. Immunol. 9, 648 (2018).

89. Friedenreich, C. M., Ryder‐Burbidge, C. & McNeil, J. Physical activity, obesity and sedentary behavior in cancer etiology: epidemiologic evidence and biologic mechanisms. Mol Oncol 15, 790–800 (2021).

90. Shephard, R. J. Physical Activity and Prostate Cancer: An Updated Review. Sports Med 47, 1055–1073 (2017).

91. Patel, A. V. et al. American College of Sports Medicine Roundtable Report on Physical Activity, Sedentary Behavior, and Cancer Prevention and Control. Medicine & Science in Sports & Exercise 51, 2391–2402 (2019).

92. Thomas, R. J., Kenfield, S. A. & Jimenez, A. Exercise-induced biochemical changes and their potential influence on cancer: a scientific review. Br J Sports Med 51, 640–644 (2017).

93. Avgerinos, K. I., Spyrou, N., Mantzoros, C. S. & Dalamaga, M. Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism 92, 121–135 (2019).

94. Booth, A., Magnuson, A., Fouts, J. & Foster, M. Adipose tissue, obesity and adipokines: role in cancer promotion. Hormone Molecular Biology and Clinical Investigation 21, (2015).

95. de Boer, M. C., Wörner, E. A., Verlaan, D. & van Leeuwen, P. A. M. The Mechanisms and Effects of Physical Activity on Breast Cancer. Clinical Breast Cancer 17, 272–278 (2017).

96. de Sousa, C. V. et al. The Antioxidant Effect of Exercise: A Systematic Review and Meta-Analysis. Sports Med 47, 277–293 (2017).

97. Nieman, D. C. & Wentz, L. M. The compelling link between physical activity and the body’s defense system. Journal of Sport and Health Science 8, 201–217 (2019).

98. Kruk, J., Aboul-Enein, B. H., Bernstein, J. & Gronostaj, M. Psychological Stress and Cellular Aging in Cancer: A Meta-Analysis. Oxidative Medicine and Cellular Longevity 2019, 1–23 (2019).

99. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

100. Solinas, G. & Karin, M. JNK1 and IKKβ: molecular links between obesity and metabolic dysfunction. FASEB j. 24, 2596–2611 (2010).

101. Gregor, M. F. & Hotamisligil, G. S. Inflammatory Mechanisms in Obesity. Annu. Rev. Immunol. 29, 415–445 (2011).

102. Cnop, M., Foufelle, F. & Velloso, L. A. Endoplasmic reticulum stress, obesity and diabetes. Trends in Molecular Medicine 18, 59–68 (2012).

103. Kolb, R., Sutterwala, F. S. & Zhang, W. Obesity and cancer: inflammation bridges the two. Current Opinion in Pharmacology 29, 77–89 (2016).

104. de Visser, K. E., Eichten, A. & Coussens, L. M. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6, 24–37 (2006).

105. Iyengar, N. M., Gucalp, A., Dannenberg, A. J. & Hudis, C. A. Obesity and Cancer Mechanisms: Tumor Microenvironment and Inflammation. JCO 34, 4270–4276 (2016).

106. O’Keeffe, L. M. et al. Smoking as a risk factor for lung cancer in women and men: a systematic review and meta-analysis. BMJ Open 8, e021611 (2018).

107. Koual, M. et al. Environmental chemicals, breast cancer progression and drug resistance. Environ Health 19, 117 (2020).

108. Calle, E. E., Miracle-McMahill, H. L., Thun, M. J. & Heath, C. W. Cigarette Smoking and Risk of Fatal Breast Cancer. American Journal of Epidemiology 139, 1001–1007 (1994).

109. Manjer, J. Survival of Women with Breast Cancer in Relation to Smoking. The European Journal of Surgery 166, 852–858 (2000).

110. Yancik, R. Effect of Age and Comorbidity in Postmenopausal Breast Cancer Patients Aged 55 Years and Older. JAMA 285, 885 (2001).

111. Murin, S. & Inciardi, J. Cigarette Smoking and the Risk of Pulmonary Metastasis From Breast Cancer. Chest 119, 1635–1640 (2001).

112. Dasgupta, P. et al. Nicotine induces cell proliferation, invasion and epithelial-mesenchymal transition in a variety of human cancer cell lines. Int. J. Cancer 124, 36–45 (2009).

113. Türker Şener, L. et al. Nicotine reduces effectiveness of doxorubicin chemotherapy and promotes CD44+CD24‑ cancer stem cells in MCF‑7 cell populations. Exp Ther Med (2018) doi:10.3892/etm.2018.6149.

114. Su, B. et al. The relation of passive smoking with cervical cancer: A systematic review and meta-analysis. Medicine 97, e13061 (2018).

115. Botteri, E. et al. Smoking and Colorectal Cancer Risk, Overall and by Molecular Subtypes: A Meta-Analysis. Am J Gastroenterol 115, 1940–1949 (2020).

116. McNabb, S. et al. Meta‐analysis of 16 studies of the association of alcohol with colorectal cancer. Int. J. Cancer 146, 861–873 (2020).

117. Deng, W., Jin, L., Zhuo, H., Vasiliou, V. & Zhang, Y. Alcohol consumption and risk of stomach cancer: A meta-analysis. Chemico-Biological Interactions 336, 109365 (2021).

118. Singhavi, H. R. et al. Alcohol and cancer risk: A systematic review and meta-analysis of prospective Indian studies. Indian J Public Health 64, 186–190 (2020).

119. Matsuda, T., Kawanishi, M., Matsui, S., Yagi, T. & Takebe, H. Specific tandem GG to TT base substitutions induced by acetaldehyde are due to intra-strand crosslinks between adjacent guanine bases. Nucleic Acids Research 26, 1769–1774 (1998).

120. Seitz, H. K. & Stickel, F. Risk factors and mechanisms of hepatocarcinogenesis with special emphasis on alcohol and oxidative stress. Biological Chemistry 387, (2006).

121. Seitz, H. K. & Stickel, F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer 7, 599–612 (2007).

122. de Martel, C. et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. The Lancet Oncology 13, 607–615 (2012).

123. V.E. Gurtsevich, N.B. Senyuta, K.V. Smirnova. Influence of genetic polymorphism of oncogenic viruses on the risk of human tumors and their specific prevention. Usp. mol. onkol 1, 36–47 (2014).

124. Lv, Y. et al. Cytomegalovirus Infection Is a Risk Factor in Gastrointestinal Cancer: A Cross-Sectional and Meta-Analysis Study. Intervirology 63, 10–16 (2020).

125. Arafa, A., Eshak, E. S., Abdel Rahman, T. A. & Anwar, M. M. Hepatitis C virus infection and risk of pancreatic cancer: A meta-analysis. Cancer Epidemiology 65, 101691 (2020).

126. Tian, T. et al. Hepatitis B virus infection and the risk of cancer among the Chinese population. Int. J. Cancer 147, 3075–3084 (2020).

127. Xu, W., Liu, Z., Bao, Q. & Qian, Z. Viruses, Other Pathogenic Microorganisms and Esophageal Cancer. Gastrointest Tumors 2, 2–13 (2015).

128. Pagano, J. S. et al. Infectious agents and cancer: criteria for a causal relation. Seminars in Cancer Biology 14, 453–471 (2004).

129. Wu, J. H., Simonette, R. A., Nguyen, H. P., Rady, P. L. & Tyring, S. K. Merkel cell polyomavirus in Merkel cell carcinogenesis: small T antigen-mediates c-Jun phosphorylation. Virus Genes 52, 397–399 (2016).

130. Weitzman, M. D. & Weitzman, J. B. What’s the Damage? The Impact of Pathogens on Pathways that Maintain Host Genome Integrity. Cell Host & Microbe 15, 283–294 (2014).

131. Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7-14 June 1994. IARC Monogr Eval Carcinog Risks Hum 61, 1–241 (1994).

132. Koeppel, M., Garcia-Alcalde, F., Glowinski, F., Schlaermann, P. & Meyer, T. F. Helicobacter pylori Infection Causes Characteristic DNA Damage Patterns in Human Cells. Cell Reports 11, 1703–1713 (2015).

133. Müller, A. Multistep activation of the Helicobacter pylori effector CagA. J. Clin. Invest. 122, 1192–1195 (2012).

134. Xie, F.-J. Helicobacter pylori infection and esophageal cancer risk: An updated meta-analysis. WJG 19, 6098 (2013).

135. Torre, L. A. et al. Global cancer statistics, 2012: Global Cancer Statistics, 2012. CA: A Cancer Journal for Clinicians 65, 87–108 (2015).

136. Ford, A. C., Yuan, Y., Forman, D., Hunt, R. & Moayyedi, P. Helicobacter pylori eradication for the prevention of gastric neoplasia. Cochrane Database of Systematic Reviews (2020) doi:10.1002/14651858.CD005583.pub3.

137. Li, Z., Ying, X., Shan, F. & Ji, J. The association of garlic with Helicobacter pylori infection and gastric cancer risk: A systematic review and meta‐analysis. Helicobacter 23, e12532 (2018).

138. Kalantari, N. et al. Association between Cryptosporidium infection and cancer: A systematic review and meta-analysis. Parasitology International 74, 101979 (2020).

 

 

Ещё бы вставить инфу из этой статьи: 10.1093/jn/nxz081

Что по дозировке и как влияло

добавить тамоксифен, анастрозол, метформин, вакцинацию

[АК3]Обязательно! Особенно тамоксифен увеличивающий рак эндометрия.

Вакцинацию я бы не трогала, спорная тема


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: