Тема 7. Биомембраны и транспорт

Тестовые вопросы

1. Что такое «провитамины»

а) предшественники жирорастворимых витаминов;

б) предшественники водо-растворимых витаминов;

в) витаминоподобные соединения.

Первая живая клетка появилась как только образовалась мембрана, которая отделила содержимое клетки от окружающей среды. Мембраны формируют внешнюю границу клетки и регулируют транспорт молекул через эту границу. Они разделяют клетку на дискретные компартаменты, чтобы изолировать процессы и компоненты. Мембраны организуют последовательности сложных реакций, играют центральную роль в накоплении и хранении энергии, осуществлении межклеточных связей. Биологическая активность мембран во многом зависит от их физических свойств.

Мембраны представляют собой достаточно прочные и одновременно эластичные самоизолирующиеся образования, они обладают селективной проницаемостью к полярным растворителям. Их гибкость, эластичность позволяют трансформировать форму в процессе роста клетки и ее движения. Ее способность к изолированности при нарушении целостности клетки обусловлена способностью двух мембран сплавляться.

Мембраны не представляют только пассивный барьер. Они включают массив белков, являющихся промоторами или катализаторами различных молекулярных механизмов. Транспортные белки, встроенные в мембраны, подобно насосам перемещают растворы органических соединений и неорганических ионов через мембрану против градиента концентраций. Преобразователи энергии переводят энергию из одной формы в другую. Рецепторы на плазматической мембране воспринимают внеклеточные сигналы, преобразуя их в молекулярные изменения внутри клетки. Мембраны построены из двух слоев молекул, поэтому они очень тонкие, их можно рассматривать как двумерные системы.

Большое число процессов в клетке связано с мембранами (синтез липидов и определенных белков, преобразование энергии в митохондриях и хлоропластах). Так как межмолекулярные взаимодействия более вероятны в двумерном пространстве, чем трехмерном, эффективность фермент-катализируемых циклов превращений на мембранах существенно увеличивается.

Белки и полярные липиды составляют основную массу биологических мембран, небольшое количество углеводов представлено в гликопротеинах или гликолипидах.

Основные компоненты плазматических мембран.

Вид Белок, % Фосфолипид, % Др. липиды Стерол, % Тип стерола
Печень мыши     -   Холестерол
Лист кукурузы     Галактолипид   Цитостерол
Дрожжи     Триацилглицеролы   Эргостерол
E. коли     Стерилсложные эфиры   -

Каждая мембрана имеет характерный липидный состав, что подтверждается исследованиями методом электрофореза в полиакриламидном геле в присутствии детергента - додецилсульфата натрия.

Мембраны с различными функциями имеют в своем составе различные белки. Толщина мембран составляет от 5 до 8 нм. Основным структурным элементом мембраны выступает липидный бислой. Мембранные липиды находятся в постоянном движении. Хотя структура липидного бислоя сама по себе устойчива, молекулы индивидуальных фосфолипидов и стеролов имеют большую степень свободы в плоскости мембраны. Они диффундируют так быстро, что молекула индивидуального липида может переместиться, к примеру вокруг эритроцита всего лишь за несколько секунд. Внутренняя часть бислоя может рассматриваться как жидкость, углеводородные цепи жирных кислот находятся в постоянном движении в результате вращения вокруг одинарных С-С связей. Степень жидкостного состояния зависит от состава липидов и температуры. При низких температурах движение липидов замедляется и бислой имеет состояние близкое к паракристаллическому. Температура перехода от паракристаллического состояния к жидкому зависит от состава липидов мембраны. Насыщенные жирные кислоты способствуют образованию паракристаллического состояния. Содержание стеролов также определяет температуру перехода. Жесткие циклические структуры стеролов снижают свободу движения соседних жирнокислотных цепей. С другой стороны при низких температурах они препятствуют компактизации жирнокислотных цепей.

Как микроорганизмы, так и культуры животных клеток регулируют свой липидный состав таким образом, чтобы обеспечивать необходимую жидкую консистенцию в изменяющихся условиях роста.

Жирнокислотный состав клеток Е. коли, выращенных при разных температурах

Жирная кислота Процент жирной кислоты
10°С 20°С 30°С 40°С
Миристиновая (14:0)        
Пальметиновая (16:0)        
Пальметолеиновая (16:1)        
Олеиновая (18:1)        
Гидроксимиристиновая        
Отношение: ненасыщенные к-ты / насыщенные к-ты 2,90 2,00 1,60 0,38

Мембранные белки пронизывают липидный бислой, могут быть фиксированы на внешней или внутренней стороне бислоя. Мембранные белки ориентированы асимметрично, они могут быть разделены на две группы: внутренние (неотъемлемые) и внешние (периферические) белки. Периферические белки могут быть отделены от мембраны путем мягких обработок, они в общем случае растворимы в воде. Напротив внутренние мембранные белки требуют для своего отделения действия ряда агентов (детергентов, органических растворителей или денатурантов). 0ни образуют нерастворимые в воде агрегаты.

Каждая живая клетка требует для своего существования поступления из окружения питательных веществ для биосинтеза и получения энергии, она выделяет в окружающую среду вторичные продукты метаболизма. Плазматическая мембрана содержит белки, которые распознают и переносят в клетку такие необходимые вещества, как углеводы, аминокислоты и неорганические ионы. В некоторых случаях эти компоненты поступают в клетку против градиента концентрации, т.е. накачиваются в клетку посредством биологических транспортных систем.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: