double arrow

Характеристическое уравнение имеет сопряженные комплексные корни


Для понимания третьего случая требуются элементарные знания про комплексные числа. Если материал позабылся, прочитайте урок Комплексные числа, в частности, параграф Извлечение корней из комплексных чисел.

Если характеристическое уравнение имеет сопряженные комплексные корни , (дискриминант ), то общее решение однородного уравнения принимает вид:
, где – константы.
Примечание: Сопряженные комплексные корни почти всегда записывают кратко следующим образом:

Если получаются чисто мнимые сопряженные комплексные корни: , то общее решение упрощается:

Пример 5

Решить однородное дифференциальное уравнение второго порядка

Решение: Составим и решим характеристическое уравнение:


– получены сопряженные комплексные корни

Ответ: общее решение:

Пример 6

Решить однородное дифференциальное уравнение второго порядка

Полное решение и ответ в конце урока.

Иногда в заданиях требуется найти частное решение однородного ДУ второго порядка, удовлетворяющее заданным начальным условиям, то есть, решить задачу Коши. Алгоритм решения полностью сохраняется, но в конце задачи добавляется один пункт.




Пример 7

Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям ,

Решение: составим и решим характеристическое уравнение:

,
Получены два различных действительных корня, поэтому общее решение:

Теперь нужно найти частное решение, соответствующее заданным начальным условиям. Наша задача состоит в том, чтобы найти ТАКИЕ значения констант, чтобы выполнялисьОБА условия.
Алгоритм нахождения частного решения следующий:

Сначала используем начальное условие :

Согласно начальному условию, получаем первое уравнение: или просто

Далее берём наше общее решение и находим производную:

Используем второе начальное условие :

Согласно второму начальному условию, получаем второе уравнение: или просто

Составим и решим систему из двух найденных уравнений:

Допустимо использовать «школьный» метод решения, но в высшей математике чаще применяют метод почленного сложения/вычитания уравнений системы. В составленной системе удобно разделить второе уравнение на 2 и почленно сложить уравнения:

Всё, что осталось сделать – подставить найденные значения констант в общее решение :

Ответ: частное решение:

Проверка осуществляется по следующей схеме:
Сначала проверим, выполняется ли начальное условие :
– начальное условие выполнено.

Находим первую производную от ответа:

– второе начальное условие тоже выполнено.

Находим вторую производную:

Подставим и в левую часть исходного дифференциального уравнения :
, что и требовалось проверить.

Такие образом, частное решение найдено верно.



Пример 8

Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям , . Выполнить проверку.

Это пример для самостоятельного решения, ответ в конце урока. Если не помните значения тригонометрических функций, используйте Тригонометрические таблицы.

Как видите, особых сложностей с однородными уравнениями нет, главное, правильно решить квадратное уравнение.

Иногда встречаются нестандартные однородные уравнения, например уравнение в виде , где при второй производной есть некоторая константа , отличная от единицы (и, естественно, отличная от нуля). Алгоритм решения ничуть не меняется, следует невозмутимо составить характеристическое уравнение и найти его корни. Если характеристическое уравнение будет иметь два различных действительных корня, например: , то общее решение запишется по обычной схеме: .

В ряде случаев из-за опечатки в условии могут получиться «нехорошие» корни, что-нибудь вроде . Что делать, ответ придется записать так:

С «плохими» сопряженными комплексными корнями наподобие тоже никаких проблем, общее решение:

То есть, общее решение в любом случае существует. Потому-что любое квадратное уравнение имеет два корня.









Сейчас читают про: