Свойства математического ожидания случайной величины

1. Математическое ожидание постоянной равно этой постоянной, т.е. если с – постоянная, то MX = c.

Доказательство. Постоянную можно рассматривать как случайную величину, принимающую значения с с постоянной вероятностью p = 1, тогда по формуле (1) имеем

MX = 1 c = c.

2. M (сX) = сMX.

Это свойство следует из теорем 1, 2.

3. Если определены MX и MY, то

M (X + Y) = MX + MY,

причем это свойство верно как для зависимых, так и для независимых случайных величин.

Доказательство. Докажем это свойство для конечных дискретных случайных величин. В соответствии с определением суммы случайных величин X + Y представляют случайную величину, которая принимает значения xi + yj с вероятностью

pij = P [(X = xi), (Y = yj)],

поэтому

M (X + Y) = .

Так как в первой двойной сумме xi не зависит от индекса j, по которому ведется суммирование по второй сумме, и аналогично, во второй двойной сумме yj не зависит от индекса i, то

M (X + Y)=

Мы воспользовались свойством, что (см. лекцию 8)

4. Если Х и Y независимы, то M (X Y) = MX MY

Доказательство.

M (X,Y) =

Пример 1. Найдем математическое ожидание нормальной случайной величины Х ~ N (a, s).

Таким образом, МХ = а.

Пример 2. Найдем математическое ожидание числа успехов в n испытаниях Бернулли.

Пусть Х имеет биномиальное распределение: .

Обозначим через Xi – случайную величину, равную числу успехов в i -м испытании, тогда

Р (Хi = 0) = q, Р (Хi = 1) = p, MXi = 0 q + 1 p = p, но

Таким образом, МХ = np.

ЛЕКЦИЯ 14. ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН (продолжение)

Пусть Z = (X,Y) – двумерная случайная величина. Рассмотрим, как найти условное среднее случайной величины Z при условии, что Y = y. Предположим, что Z – дискретная случайная величина, pij = P (X = xi, Y = yj), . На предыдущих лекциях (лекция 8) нами было показано, что

; ,

и что условные вероятности

;

удовлетворяют условиям

Поэтому при фиксированных уj и хi, вероятности P (X = xi/Y = yj), P (Y = yj / X = xi) можно рассматривать как условные распределения случайных величин Х (при условии, что Y = yj) и Y (при условии, что Х = хi). Тогда

Предположим, что Z – непрерывная двумерная случайная величина, pz(Х,Y) – плотность Z; px(x) – плотность X; p y(y) – плотность Y. Тогда условную плотность распределения Х при условии, что Y = y, определим

,

а условную плотность распределения Y при условии, что Х = х, определим

.

Найдем условное математическое ожидание Х при условии, что Y = y в соответствии с формулой (2) предыдущей лекции

M (X/y) = M (X / Y = y)=

Аналогично,

.

Функция fx (y) = М (Х / у) каждому у ставит в соответствие условное математическое ожидание Х при условии, что Y = y, т.е. она отражает зависимость от у условного среднего Х. Функция fx (y) = М (Х / у) называется функцией регрессии Х на У.

Аналогично, функция fу (х) = М (Y/x) называется функцией регрессии Y на Х.

Найдем математическое ожидание от математического ожидания М(X/у). Ограничимся рассмотрением дискретных случайных величин.

Таким образом, M (M (X / y)) = MX и называется формулой полного математического ожидания.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: