Глава 1. Понятие проективного пространства
Библиогр.: 19
Курс лекций
ПРОЕКТИВНАЯ ГЕОМЕТРИЯ
И.С. Логунов
УДК 514. 144 (072.8)
ББК 22.151. 3 р 3
Л 698
Печатается по решению редакционно-издательского совета ФГБОУ ВПО «Орловский государственный университет».
Рецензент: кандидат физико-математических наук, доцент Панюшкин С.В.
Редактор: кандидат физико-математических наук, доцент Ломакин Д.Е.
Логунов И. С.ПРОЕКТИВНАЯ ГЕОМЕТРИЯ. – Орел: ОГУ, 2012. - 67 с.: илл.
Ó Логунов И. С., 2012 г.
Проективная геометрия возникла в первой половине XIX века. Основы её заложил в работе «Трактат о проективных свойствах фигур» известный французский математик Жан Виктор Понселе (1788-1867). Он выделил как объект изучения некоторые особые свойства геометрических фигур наиболее общего характера, которые назвалпроективными. Эти свойства связаны с понятием центрального проектирования.
Рассмотрим в евклидовом пространстве
две плоскости
и
и точку
, не лежащую на этих плоскостях. Пусть
– произвольная точка плоскости
.
Определение. Точка
пересечения прямой
с плоскостью
называется проекцией точки
на плоскость
из центра
.
Соответствие между точками
плоскости
и их проекциями
на плоскость
называется центральным проектированием плоскости
на плоскость
из точки
.
Если
– произвольная фигура плоскости
, то множество проекций всех точек фигуры
на плоскость
является некоторой фигурой
плоскости
, которая называется проекцией фигуры
.
Изменяя положение точки
и плоскости
, для одной и той же фигуры
будем получать различные фигуры
. При этом многие свойства фигуры
искажаются: например, меняются длины отрезков и величины углов, пересекающиеся прямые могут изображаться параллельными прямыми.
С другой стороны, некоторые свойства фигуры А сохраняются при любом центральном проектировании, например, свойство точек, лежащих на одной прямой или на одной линии второго порядка. Такие свойства фигур называются проективными. Изучением проективных свойств фигур и занимается проективная геометрия.






