double arrow

Первый и второй законы термодинамики


Первый закон термодинамики является частным случаем закона сохранения и превращения энергии. Этот закон утверждает, что энергия не исчезает и не возникает вновь, а лишь переходит из одного вида в другой в различных процессах. Значит, если телу сообщить количество теплоты Q, то оно израсходуется на изменение внутренней энергии тела ?U и на совершение внешней работы L:

.

Это соотношение представляет собой аналитическое выражение первого закона термодинамики для неподвижных тел.

В дифференциальной форме этот закон можно записать:

, или , или . (1)

Если в уравнение (1) подставить (связь между механической и технической работой), то получим:

.

Выражение (u+pv) является калориметрическим параметром состояния тела. В технической термодинамике этот параметр называют энтальпией и обозначают буквой Н и измеряют в Дж, удельную энтальпию обозначают h и измеряют в Дж/кг, то есть

.

Энтальпия – это сумма внутренней энергии и упругостной энергии газа (потенциальной энергии давления).

Следовательно, первый закон термодинамики может быть записан так:

.

В изобарном процессе (р = const) vdp = 0, следовательно .




Для идеальных газов справедливы соотношения:

и .

Тогда .

Второй закон термодинамики связан с необратимостью всех естественных процессов и является опытным законом, основывающимся на многовековых наблюдениях ученых, однако установлен он был только в середине XIX века. Являясь статическим законом, второй закон термодинамики отражает поведение большого числа частиц, входящих в состав изолированной системы. В системах, состоящих из малого количества частиц, могут иметься отклонения от второго закона термодинамики.

Самым вероятным состоянием изолированной термодинамической системы является состояние ее внутреннего равновесия, которому соответствует достижение максимального значения энтропии. Поэтому второй закон называют законом возрастания энтропии. В этой связи его можно сформулировать в виде следующего принципа: энтропия изолированной системы не может убывать.

Энтропия – это параметр состояния рабочего тела, устанавливающий связь между количеством теплоты и температурой. Для ее определения запишем уравнение первого закона термодинамики в таком виде

.

Разделим данное выражение на Т, а р заменим на , получим:

или .

Выражение говорит о том, что является полным дифференциалом некоторой функции s, являющейся параметром состояния, поскольку она зависит только от двух параметров состояния газа и не зависит от того, каким путем газ перешел из одного состояния в другое. Энтропию обозначают буквой S и измеряют в Дж/К. Энтропию, отнесенную к 1 кг газа, называют удельной энтропией и обозначают буквой s и измеряют в кДж/(К?кг).



Таким образом, .

Второй закон термодинамики представляет собой обобщение изложенных положений и постулатов, применительных к тепловым двигателям и заключается в следующем:

1. Самопроизвольное протекание естественных процессов возникает и развивается при отсутствии равновесия между участвующей в процессе термодинамической системой и окружающей средой.

2. Самопроизвольно происходящие в природе естественные процессы, работа которых может быть использована человеком, всегда протекает лишь в одном направлении от более высокого потенциала к более низкому.

3. Ход самопроизвольно протекающих процессов происходит в направлении, приводящем к установлению равновесия термодинамической системы с окружающей средой, и по достижении этого равновесия процессы прекращаются.

4. Процесс может протекать в направлении, обратном самопроизвольному процессу, если энергия для этого заимствуется из внешней среды.

Все эти формулировки, различающиеся по форме, эквивалентны друг другу по существу, так как они напрямую связаны с принципом невозможности убывания энтропии: .







Сейчас читают про: