Основные формулы. Кинематическое уравнение движения материальной точки

Кинематическое уравнение движения материальной точки (центра масс твердого тела) вдоль оси x,.

х = f(t), где f(t) некоторая функция времени.

Проекция средней скорости на ось х

Средняя путевая скорость

где Ds – путь, пройденный точкой за интервал времени Dt. Путь Ds в отличие от разности координат Dx = x1x2 не может убывать и принимать отрицательные значения, т. е. Ds³O.

Проекция мгновенной скорости на ось х

Проекция среднего ускорения на ось х .

Проекция мгновенного ускорения на ось х

Кинематическое уравнение движения материальной точки по окружности

j=f(t), r=R=const.

Модуль угловой скорости

– 6 –

Модуль углового ускорения

Связь между модулями линейных и угловых величин, характеризующих движение точки по окружности:

, at = eR, an = w2 R,

где – модуль линейной скорости; at и аn – модули тангенциального и нормального ускорений; w – модуль угловой скорости; e – модуль углового ускорения; R – радиус окружности.

Модуль полного ускорения

, или а = R .

Угол между полным а и нормальным аn ускорениями

Кинематическое уравнение гармонических колебаний материальной точки

х = A cos(wt + j),

где х – смещение, А – амплитуда колебаний, w – угловая или циклическая частота, j – начальная фаза. Скорость и ускорение материальной точки, совершающей гармонические колебания:

; а = – Aw2 соs(wt + j).

Сложение гармонических колебаний одного направления и одинаковой частоты:

а) амплитуда результирующего колебания

;

б) начальная фаза результирующего колебания

Траектория точки, участвующей в двух взаимно перпендикулярных колебаниях,

х = А1 соswt; у= A2 соs(wt+j):

a) у= , если разность фаз j=0;

– 7 –

б) у= , если разность фаз j=±p;

в) =1, если разность фаз j=±p/2

Уравнение плоской бегущей волны

y = A cosw(t-x/ )

где у смещение любой из точек среды с координатой х в момент t, скорость распространения колебаний в среде.

Связь разности фаз Dj колебаний с расстоянием между точками среды, отсчитанным в направлении распространения колебаний:

где λ – длина волны.

Импульс материальной точки массой m, движущейся со скоростью ,

p =m

Второй закон Ньютона

dp = F dt,

где F – результирующая сила, действующая на материальную точку.

Силы, рассматриваемые в механике:

а) сила упругости

F =kx,

где k – коэффициент упругости (в случае пружины – жесткость); х – абсолютная деформация;

б) сила тяжести

P = mg;

в) сила гравитационного взаимодействия

,

где G – гравитационная постоянная, m1 и m2 – массы взаимодействующих тел, r –расстояние между телами (тела рассматриваются как материальные точки). В случае гравитационного взаимодействия силу можно выразить также через

– 8 –

напряженность гравитационного поля:

F = m g

г) сила трения скольжения

F=fN,

где f – коэффициент трения, N – сила нормального давления.

Закон сохранения импульса

,

или для двух тел (i=2)

m1 1+m2 2= m1 u 1 + m2 u2 ,

где и – скорости тел в момент времени, принятый за начальный;

u1 и u2 – скорости тех же тел в момент времени, принятый за конечный.

Кинетическая энергия тела, движущегося поступательно,

, или

Потенциальная энергия:

а) упругодеформированной пружины

П= ½ kx2

где k – жесткость пружины, х –абсолютная деформация;

б) гравитационного взаимодействия

,

где G – гравитационная постоянная, m1 и m2 – массы взаимодействующих тел, r –расстояние между ними (тела рассматриваются как материальные точки),

в) тела, находящегося в однородном поле силы тяжести,

П = mgh

где g — ускорение свободного падения; h — высота тела над уровнем, принятым за нулевой (формула справедли­ва при условии h<<R, где R –радиус Земли).

Закон сохранения механической энергии в поле консервативных сил

E=Т+П=const.

– 9 –

Работа А, совершаемая результирующей силой над материальной точкой:

А= F??r?cosα

и равна изменению кинетической энергии материальной точки:

A=DT=T2 - T1

Основное уравнение динамики вращательного движения относительно неподвижной оси z

Мz =Jze,

где Мz – результирующий момент внешних сил относительно оси z, действующих на тело, e – угловое ускорение, Jz – момент инерции относительно оси вращения.

Моменты инерции некоторых тел массой т относительно оси z, проходящей через центр масс:

а) стержня длиной l относительно оси, перпендику­лярной стержню:

б) обруча (тонкостенного цилиндра) относительно оси, перпендикулярной плоскости обруча (совпадающей с осью цилиндра):

Jz=mR2,

где R – радиус обруча (цилиндра);

в) диска (сплошного цилиндра) радиусом R относительно оси, перпендику­лярной плоскости диска:

Jz= ½ mR2.

Проекция на ось z момента импульса тела, вращающегося относительно неподвижной оси z:

Lz=Jzw,

где w – угловая скорость тела.

Закон сохранения момента импульса систем тел, вращающихся вокруг неподвижной оси z:

Jzw=const,

где Jz – момент инерции системы тел относительно оси z, w – угловая скорость вращения тел системы вокруг оси z.

– 10 –

Кинетическая энергия тела, вращающегося вокруг неподвижной оси z:

Т = ½ Jzw2, или .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: