Билет 7. Центр масс. Теорема о движении центра масс

Вопрос 1

Центр масс. Теорема о движении центра масс.

Точкой приложения равнодействующей называется точка, относительно которой суммарный момент сил равен нулю.

Центр масс – точка приложения равнодействующей всех массовых сил.

(1) выводится из динамики вращения.

Массовая сила – сила, пропорциональная массам.

Теорема о движении центра масс. Ц. м. системы движется так, как двигалась бы материальная точка с массой равной сумме масс всех элементов системы под действием равнодействующей всех внешних сил, действующих на систему.

Доказывается в лоб, дифференцированием выражения (1) и подстановкой полученного выражения в закон изменения импульса.

Вопрос 2

Стационарное течение жидкости (газа). Линии тока. Трубки тока. Уравнение Бернулли. Идеальная жидкость. Течение идеальной жидкости.

Идеальная жидкость – жидкость, лишённая вязкости.

Стационарным называется такой ток жидкости или газа, при котором конфигурация линий тока остаётся неизменной.

Линия тока – линия, касательная к которой всюду совпадает по направлению с вектором скорости частиц среды.

Трубка тока – это трубка, ограниченная линиями тока, столь малого сечения, в пределах которого скорости частиц среды одинаковы.

Уравнение Бернулли: p + rv2/2 + rgh = const, всюду вдоль линии тока

Применимо для:

1. линии тока

2. трубки тока

3. потока в целом (если в пределах любого сечения характеристики потока одинаковы)

4. для 2-х сечений при условии, что в пределах этих сечений характеристики потока одинаковы

Модель: жидкость несжимаема, трение отсутствует, ток стационарный.

p – статическое давление (измеряется манометрическим зондом)

rv2/2 – динамическое давление (измеряется трубкой Пито)

p + rv2/2 – полное давление (измеряется трубкой Пито)

rgh – давление столба

Рассмотрим стационарное течение жидкости в каком-либо консервативном силовом поле, например, в поле силе тяжести. Применим к этому течению закон сохранения энергии. При этом полностью пренебрегаем теплообменом между жидкостью и средой. Выделим в жидкости бесконечно узкую трубку тока и рассмотрим часть жидкости, занимающую объём MNDC. Пусть эта часть переместилась в бесконечно близкое положение M1N1D1C1. Вычислим работу А, совершаемую при этом силами давления. Давление, действующее на боковую поверхность трубки тока, перпендикулярно к перемещению и работы не совершает. При перемещении границы MN в положение M1N1 совершается работа А1=P1S1L1, где L1=MM1- величина перемещения. Введя объём D1V=S1L1,ее можно представить в виде А1=P1DV1 или А1=P(D1m/r1), где D1m- масса жидкости в объеме MNN1M1. При перемещении границы CD в положение границы C1D1 жидкость совершает работу против давления P2. Для нее, рассуждая аналогично, найдём А2 =P2(D2m)/r2, где D2m- масса жидкости в объеме CDD1C1. Но если движение стационарно, то масса жидкости в объеме M1N1DC не изменится, следовательно D1m=D2m=Dm, получим А=А12=(P1/r1 -P2/r2) Dm. Эта работа = приращению DЕ полной энергии выделенной части жидкости. Ввиду стационарности течения энергия жидкости в объеме M1N1DC не изменилась. Поэтому величина DE= разности энергий массы жидкости Dm, в положениях CDD1C1 и MNN1M1. Находим DЕ=(e2-e1)Dm, где e - полная энергия, приходящаяся на единицу массы жидкости. Приравняв DE к А и сократив на Dm получим: e1+P1/ =e2 +P2/r2 . Отсюда следует, что вдоль одной и той же линии тока при стационарном течении идеальной жидкости величина e+P/r остаётся постоянной: e+P/r=B=const-это отношение называется уравнением Бернулли. Оно справедливо и для сжимаемых жидкостей. Требуется только, чтобы жидкость была идеальной, а течение- стационарным.

Линия, касательная которой указывает направление скорости частицы жидкости, проходящей в рассматриваемый момент времени через точку касания, называется линией тока. Если поле скоростей, а следовательно, соответствующие ему линии тока не меняются с течением времени, то движ. жидкости называется стационарным или установившемся.

Возьмем произвольный замкнутый контур С и через каждую точку его в один и тот же момент времени проведём линии тока. Они расположатся на некоторой трубчатой поверхности, называемой трубкой тока. Так как скорости частиц жидкости направлены по касательным к линиям тока, то при течении жидкость не может пересекать боковую поверхность трубки тока. Масса жидкости, протекающая за время dt через попер. сечение трубки будет: dm=rvSdt. Если взять 2А сечения S1=S2, то: r1v1S1=r2v2S2, если жидкость не сжимаема, то r1=r2 получится: (v1/v2)=(S2/S1). Скорость жидкости в одной и той же трубке тока тем больше, чем уже поперечное сечение трубки.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: