double arrow

Касательная плоскость и нормаль к поверхности


Пусть функция z=f(x,y) дифференцируема в точке некоторой области . Рассечем поверхность S, изображающую функцию z, плоскостями x= и y= . Плоскость x= пересекает поверхность S по некоторой линии , уравнение которой получается подстановкой в выражение исходной функции z=f(x,y) вместо х числа . Точка принадлежит кривой . В силу дифференцируемости функции z в точке функция также является дифференцируемой в точке y= . Следовательно, в этой точке в плоскости x= к кривой может быть проведена касательная . Построим касательную к кривой в точке x= . Прямые и определяют плоскость , которая называется касательной плоскостью к поверхности S в точке . Составим ее уравнение. Так как плоскость проходит через точку , то ее уравнение может быть записано в виде А( ) + В( ) + С( )=0, которое можно переписать так: (разделив уравнение на –С и обозначив А/-С= , В/-С= ). Найдем и . Уравнения касательных имеют вид: ; соответственно. Касательная лежит в плоскости . . В итоге . Следовательно, . Искомое уравнение касательной плоскости: . Прямая, проходящая через точку и перпендикулярная касательной плоскости, построенной в этой точке поверхности, называется ее нормалью. Каноническое уравнение нормали: .










Сейчас читают про: