Тепломассоперенос в турбулентных потоках

При рассмотрении турбулентных потоков в реальных жидкостях и газах, наряду с переносом количества движения (импульса), часто приходится одновременно иметь дело учитывать с переносом тепла и вещества (тепломассобменом).

Практически интересные задачи тепломассопереноса в турбулентных потоках обычно допускают простую стратификацию по температуре и стратификацию по скорости, о которой мы говорили в предыдущих параграфах. Пользуясь идеей Буссинеска о предании формуле турбулентного трения того же вида, что и для ламинарного течения, а именно в виде закона Ньютона, можно и турбулентным потоком тепла и вещества придать вид, формально обобщающий известны уже нам законы Фурье и Фика.

Закон Фурье

Где тепловой поток

коэффициент теплопроводности

температурный градиент

площадь теплообмена

Первый закон Фика устанавливает для стационарной диффузии пропорциональность плотности потока диффундирующих частиц градиенту их концентрации :

Где коэффициент диффузии;

координата.

Второй закон Фика описывает нестандартный случай, он следует из первого закона Фика при учёте изменения концентрации диффундирующих частиц со временем :

При 2-ой закон Фика представляет собой уравнение диффузии

Обозначим соответственно через , , - коэффициенты турбулентного переноса импульса (количества движения, тепла и концентрации примеси). Тогда в принятой стратификации будем иметь следующие выражения для касательного напряжения трения , потока тепла и потока вещества :

;

;

.

Как это непосредственно следует из правых частей выражений (10), (18) и аналогичного им уравнения турбулентной диффузии, полный перенос импульса, тепла и вещества может быть представлен как сумма соответствующих молекулярного (ламинарного) и молярного (турбулентного) переносов:

;

;

.

В основе общей теории турбулентного переноса лежит представление о том, что одни и те же объёмы жидкости или газа, участвуя в пульсационном движении, одновременно переносят количество движения, тепло и вещество.

При этом, казалось бы, что коэффициенты должны быть пропорциональны друг другу. И это действительно было так, если бы переносимая субстанция (количество движения, тепло, примеси вещества) не взаимодействовала с окружающей средой, вела себя пассивно в процессе переноса. Если представить себе, что на некотором пути смешения , как это требует теория Прандтля, количество движения сохраняется, то отсюда не следует, что на том же пути будет сохраняться и количество тепла и вещества.

Простейшим и практически часто достаточным является допущение о пассивности переносимой субстанции , следовательно, о равенстве турбулентных чисел Прандтля

и Шмидта

Они являются безразмерными критериями, характеризующими связь между процессами переноса импульса, тепла и вещества.

В этом случае задача определения параметров течения газа (жидкости) упрощается, т.к. достаточно определить один из турбулентных коэффициентов, чаще и остальные легко определяются из выражений .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: