Площадь поверхности вращения

Если дуга кривой, заданная неотрицательной функцией , , вращается вокруг оси Ox, то площадь поверхности вращения вычисляется по формуле , где a и b — абсциссы начала и конца дуги.

Если дуга кривой, заданная неотрицательной функцией , , вращается вокруг оси Oy, то площадь поверхности вращения вычисляется по формуле

,

где с и d — абсциссы начала и конца дуги.

Если дуга кривой задана параметрическими уравнениями , , причем , то

Если дуга задана в полярных координатах , то

.

Пример. Вычислим площадь поверхности, образованной вращением в пространстве вокруг оси части линии y= , расположенной над отрезком оси .

Так как , то формула даёт нам интеграл

Сделаем в последнем интеграле замену t = x + (1/2) и получим:

В первом из интегралов правой части сделаем замену z = t2- :

Для вычисления второго из интегралов в правой части обозначим его и проинтегрируем по частям, получив уравнение для :

Перенося в левую часть и деля на 2, получаем

откуда, наконец,

Приложения определенного интеграла к решению некоторых задач механики и физики

Работа переменной силы. Рассмотрим движение материальной точки вдоль оси OX под действием переменной силы f, зависящей от положения точки x на оси, т.e. силы, являющейся функцией x. Тогда работа A, необходимая для перемещения материальной точки из позиции x = a в позицию x = b вычисляется по формуле:

Для вычисления силы давления жидкости используют закон Паскаля, согласно которому давление жидкости на площадку равно ее площади S, умноженной на глубину погружения h, на плотность ρ и ускорение силы тяжести g, т.е.

.

1. Моменты и центры масс плоских кривых. Если дуга кривой задана уравнением y = f(x), a ≤ x ≤ b, и имеет плотность , то статические моменты этой дуги Mx и My относительно координатных осей Ox и Oy равны

;

моменты инерции IХ и Iу относительно тех же осей Ох и Оу вычисляются по формулам

а координаты центра масс и — по формулам

где l — масса дуги, т. е.

Пример 1. Найти статические моменты и моменты инерции относительно осей Ох и Оу дуги цепной линии y = chx при 0 ≤ x ≤ 1.

Если плотность не указана, предполагается, что кривая однородна и . Имеем: Следовательно,

Пример 2. Найти координаты центра масс дуги окружности x = acost, y = asint, расположенной в первой четверти. Имеем:

Отсюда получаем:

В приложениях часто оказывается полезной следующая Теорема Гульдена. Площадь поверхности, образованной вращением дуги плоской кривой вокруг оси, лежащей в плоскости дуги и ее не пересекающей, равна произведению длины дуги на длину окружности, описываемой ее центром масс.

Пример 3. Найти координаты центра масс полуокружности

Вследствие симметрии . При вращении полуокружности вокруг оси Ох получается сфера, площадь поверхности которой равна , а длина полуокружности равна па. По теореме Гульдена имеем 4

Отсюда , т.е. центр масс C имеет координаты C .

2. Физические задачи. Некоторые применения определенного интеграла при решении физических задач иллюстрируются ниже в примерах.

Пример 4. Скорость прямолинейного движения тела выражается формулой (м/с). Найти путь, пройденный телом за 5 секунд от начала движения.

Так как путь, пройденный телом со скоростью v(t) за отрезок времени [t1, t2], выражается интегралом

то имеем:

Пример. Найдём площадь ограниченной области, лежащей между осью и линией y = x3-x. Поскольку

линия пересекает ось в трёх точка: x1= -1, x= 0, x= 1.

Ограниченная область между линией и осью проектируется на отрезок , причём на отрезке , линия y = x- x идёт выше оси (то есть линии y = 0, а на - ниже. Поэтому площадь области можно подсчитать так:

Пример. Найдём площадь области, заключённой между первым и вторым витком спирали Архимеда r = a (a > 0) и отрезком горизонтальной оси .

Первый виток спирали соответствует изменению угла в пределах от 0 до , а второй — от до . Чтобы привести изменение аргумента к одному промежутку, запишем уравнение второго витка спирали в виде , . Тогда площадь можно будет найти по формуле, положив и :

Пример. Найдём объём тела, ограниченного поверхностью вращения линии y = 4x - x2 вокруг оси (при ).

Для вычисления объёма тела вращения применим формулу

Имеем:

Пример. Вычислим длину дуги линии y=lncosx, расположенной между прямыми и .

Так как

и

(мы взяли в качестве значения корня , а не -cosx, поскольку cosx > 0 при , длина дуги равна

Ответ: .

Пример. Вычислим площадь Q поверхности вращения, полученной при вращении дуги циклоиды x = t - sint; y = 1 - cost, при , вокруг оси .

 
 


Для вычисления применим формулу:

Имеем: , так что

Для перехода под знаком интеграла к переменной заметим, что при получаем , а также

Кроме того, предварительно вычислим

(так что ) и

Получаем:

Делая замену , приходим к интегралу


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: