Наука в собственном смысле: главные этапы становления

В соответствии с принятой нами концепцией генезиса науки и периодизации ее истории (гл. II, §1) рассмотрим основные осо­бенности главных этапов становления науки в собственном смысле. Последняя исторически первоначально возникла в форме экс­периментально-математического естествознания. Социально-гу­манитарные науки — в силу определенных причин — возникли и формировались несколько позднее (о них речь будет идти в гл. VIII).

Здесь, однако, заметим следующее. Выбор естествознания (и прежде всего физики) для анализа основных этапов становления науки в собственном смысле обусловлен следующим обстоятель­ством. «В методологических исследованиях строение развитых наук принимается за своего рода эталон, с позиций которого рас­сматриваются все другие системы теоретического знания».

И это вовсе не натурализм или физикализм. Дело в том, что развитое явление (предмет) более полно, глубоко и рельефнее «предъявляет» исследователю свои характеристики, чем явление (предмет) неразвитый, незрелый. «Анатомия человека — ключ к анатомии обезьяны», — говорил Маркс.

История и современное состояние науки показали, что — опять-таки в силу конкретных причин — именно в естествознании об­щие контуры науки как таковой (науки в собственном смысле), ее структура, динамика и т. п. просматриваются наиболее четко, зри­мо и выпукло. Но это никоим образом не означает ни игнорирова­ния или недооценки социально-гуманитарных наук в анализе «на­уки вообще», ни абсолютизации их специфики.

Классическое естествознание и его методология

Хронологически этот период, а значит, становление естество­знания как определенной системы знания, начинается примерно в XVI-—XVII вв. и завершается на рубеже XIX—XX вв. В свою очередь данный период можно разделить на два этапа: этап меха­нистического естествознания (до 30-х гг. XIX в.) и этап зарожде­ния и формирования эволюционных идей (до конца XIX — начала XX в.).

I. Этап механистического естествознания. Начало этого этапа совпадает со временем перехода от феодализма к капитализму в Западной Европе. Начавшееся бурное развитие производительных сил (промышленности, горного и военного дела, транспорта и т. п.) потребовало решения целого ряда технических задач. А это в свою очередь вызвало интенсивное формирование и развитие частных наук, среди которых особую значимость приобрела механика — в силу необходимости решения названных задач.

Активное деятельностное отношение к миру требовало позна­ния его существенных связей причин и закономерностей, а зна­чит, резкого усиления внимания к проблемам самого познания и его форм, методов, возможностей, механизмов и т. п. Одной из ключевых проблем стала проблема метода. Укрепляется идея о возможности изменения, переделывания природы, на основе по­знания ее закономерностей, все более осознается практическая цен­ность научного знания («знание — сила»). Механистическое есте­ствознание начинает развиваться ускоренными темпами.

В свою очередь этап механистического естествознания можно условно подразделить на две ступени — доньютоновскую и нью­тоновскую, — связанные соответственно с двумя глобальными на­учными революциями, происходившими в XVI—XVII вв. и со­здавшими принципиально новое (по сравнению с античностью и средневековьем) понимание мира.

Доньютоновская ступень — и соответственно первая научная революция происходила в период Возрождения, и ее содержание определило гелиоцентрическое учение Я. Коперника (1473—1543).

Это был конец геоцентрической системы, которую Коперник отверг на основе большого числа астрономических наблюдений и расчетов, — это и было первой научной революцией, подрывав­шей также и религиозную картину мира. Кроме того, он высказал мысль о движении как естественном свойстве материальных объек­тов, подчиняющихся определенным законам, и указал на ограни­ченность чувственного познания («Солнце ходит вокруг Земли»). Но Коперник был убежден в конечности мироздания: Вселенная где-то заканчивается твердой сферой, на которой закреплены не­подвижные звезды. Нелепость такого взгляда показал датский астроном Тихо Браге, а особенно Д. Бруно. Он отрицал наличие центра Вселенной, отстаивал тезис о ее бесконечности и о бесчис­ленном количестве миров, подобных Солнечной системе.

Вторую глобальную научную революцию XVII в. чаще всего связывают с именами Галилея, Кеплера и Ньютона, который ее и завершил, открыв тем самым новую — посленьютоновскую сту­пень развития механистического естествознания. В учении Г. Га­лилея (1564—1642) уже были заложены достаточно прочные основы нового механистического естествознания. В центре его на­учных интересов стояла проблема движения. Открытие принципа инерции, исследование им свободного падения тел имели боль­шое значение для становления ь. юлики как науки.

Исходным пунктом познания, по Галилею, является чувствен­ный опыт, который, однако, сам по себе не дает достоверного знания. Оно достигается планомерным и реальным или мыслен­ным экспериментированием, опирающимся на строгое количе­ственно-математическое описание. Критикуя непосредственный опыт, Галилей первым показал, что опытные данные в своей первозданности вовсе не являются исходным элементом познания, что они всегда нуждаются в определенных теоретических предпо­сылках. Иначе говоря. опыт не может не предваряться определен­ными теоретическими допущениями, не может не быть «теорети­чески нагруженным».

Вот почему Галилей, в отличие от «чистого эмпиризма» Ф. Бэ­кона (при всем сходстве их взглядов), был убежден, что «фактуальные данные» никогда не могут быть даны в их «девственной первозданное». Они всегда так или иначе «пропускаются» через определенное теоретическое «видение» реальности, в свете кото­рого они (факты) получают соответствующую интерпретацию. Та­ким образом, опыт — это очищенный в мысленных допущениях и идеализациях опыт, а не просто (и не только) простое описание фактов.

Галилей выделял два основных метода экспериментального исследования природы:

Аналитический («метод резолюций») — прогнозирование чув­ственного опыта с использованием средств математики, абст­ракций и идеализации. С помощью этих средств выделяются элементы реальности (явления, которые «трудно себе пред­ставить»), недоступные непосредственному восприятию (на­пример, мгновенная скорость). Иначе говоря, вычленяются предельные феномены познания, логически возможные, но не представимые в реальной действительности.

Синтетически-дедуктивный («метод композиций») — на базе количественных соотношений вырабатываются некоторые те­оретические схемы, которые применяются при интерпретации явлений, их объяснении.

Достоверное знание в итоге реализуется в объясняющей тео­ретической схеме как единство синтетического и аналитического, чувственного и рационального. Следовательно, отличительное свойство метода Галилея — построение научной эмпирии, кото­рая резко отлична от обыденного опыта.

Оценивая методологические идеи Галилея, В. Гейзенберг от­мечал, что «Галилей отвернулся от традиционной, опиравшейся на Аристотеля науки.своего времени и подхватил философские идеи Платона... Новый метод стремился не к описанию непосред­ственно наблюдаемых фактов, а скорее, к проектированию экспе­риментов, к искусственному созданию феноменов, при обычных условиях не наблюдаемых, и к их расчету на базе математической теории». Гейзенберг выделяет две характерные черты нового ме­тода Галилея: а) стремление ставить каждый раз новые точные эксперименты, создающие идеализированные феномены; б) со­поставление последних с математическими структурами, прини­маемыми в качестве законов природы.

Способ мышления Галилея исходил из того, что одни чув­ства без помощи разума не способны дать нам истинного понима­ния природы, для достижения которого нужно чувство, сопро­вождаемое рассуждением. Имея в виду прежде всего галилеевский принцип инерции, А. Эйнштейн и Л. Инфельд писали: «От­крытие, сделанное Галилеем, и применение им методов научного рассуждения были одним из самых важных достижений в исто­рии человеческой мысли, и оно отмечает действительное начало физики. Это открытие учит нас тому, что интуитивным выводам, базирующимся на непосредственном наблюдении, не всегда можно доверять, т. е. они иногда ведут по ложному следу»2.

Иоган Кеплер (1571—1630) установил три закона движения планет относительно Солнца. Кроме того, он предложил теорию солнечных и лунных затмений и способы их предсказания, уточ­нил расстояние между Землей и Солнцем и др. Но Кеплер не объяснил причины движения планет, ибо динамика — учение о силах и их взаимодействии — была создана позже Ньютоном. Вторая научная революция завершилась творчеством Ньютона (1643—1727), научное наследие которого чрезвычайно глубоко и разнообразно, уже хотя бы потому, что, как сказал он сам, «я стоял на плечах гигантов». Главный труд Ньютона — «Математи­ческие начала натуральной философии» (1687) — это, по выраже­нию Дж. Бернала, «библия новой науки», «источник дальнейшего расширения изложенных в ней методов». В этой и других своих работах Ньютон сформулировал понятия и законы классической механики, дал математическую формулировку закона всемирно­го тяготения, теоретически обосновал законы Кеплера (создав тем самым небесную механику), и с единой точки зрения объяснил большой объем опытных данных (неравенства движения Земли, Луны и планет, морские приливы и др.).

Кроме того, Ньютон — независимо от Лейбница — создал диф­ференциальное и интегральное исчисление как адекватный язык математического описания физической реальности. Он был авто­ром многих новых физических представлений — о сочетании кор­пускулярных и волновых представлений о природе света, об иерар­хически атомизированной структуре материи, о механической при­чинности и др. Построенный Ньютоном фундамент, по свидетель­ству Эйнштейна, оказался исключительно плодотворным и до кон­ца XIX в. считался незыблемым.

Научный метод Ньютона имел целью четкое противопостав­ление достоверного естественнонаучного знания вымыслам и умо­зрительным схемам натурфилософии. Знаменитое его высказы­вание «гипотез не измышляю» было лозунгом этого противопос­тавления.

Содержание научного метода Ньютона (метода принципов) сводится к следующим основным «ходам мыслей»:

провести опыты, наблюдения, эксперименты;

посредством индукции вычленить в чистом виде отдельные стороны естественного процесса и сделать их объективно на­блюдаемыми;

понять управляющие этими процессами фундаментальные за­кономерности, принципы, основные понятия;

осуществить математическое выражение этих принципов, т. е. математически сформулировать взаимосвязи естественных процессов;

построить целостную теоретическую систему путем дедуктив­ного развертывания фундаментальных принципов, т. е. «прий­ти к законам, имеющим неограниченную силу во всем космо­се» (В. Гейзенберг);

«использовать силы природы и подчинить их нашим целям в технике» (В.Гейзенберг).

С помощью этого метода были сделаны многие важные от­крытия в науках. На основе метода Ньютона в рассматриваемый период был разработан и использовался огромный «арсенал» са­мых различных методов. Это прежде всего наблюдение, экспери­мент, индукция, дедукция, анализ, синтез, математические ме­тоды, идеализация и др. Все чаще говорили о необходимости со­четания различных методов.

Сам Ньютон с помощью своего метода решил три кардиналь­ные задачи. Во-первых, четко отделил науку, от умозрительной натурфилософии и дал критику последней. («Физика, берегись метафизики!») Под натурфилософией Ньютон понимал «точную науку о природе», теоретико-математическое учение о ней. Во-вторых, разработал классическую механику как целостную систе­му знаний о механическом движении тел. Его механика стала классическим образцом научной теории дедуктивного типа и эта­лоном научной теории вообще, сохранив свое значение до настоя­щего времени. В-третьих, Ньютон завершил построение новой ре­волюционной для того времени картины природы, сформулиро­вав основные идеи, понятия, принципы, составившие механичес­кую картину мира. При этом он считал, что «было бы желательно вывести из начал механики и остальные явления природы».

Основное содержание механической картины мира, создан­ной Ньютоном, сводится к следующим моментам.

Весь мир, вся Вселенная (от атомов до человека), понимался как совокупность огромного числа неделимых и неизменных частиц, перемещающихся в абсолютном пространстве и вре­мени, взаимосвязанных силами тяготения, мгновенно пере­дающимися от тела к телу через пустоту (ньютоновский прин­цип дальнодействия).

Согласно этому принципу любые события жестко предопре­делены законами классической механики, так что если бы су­ществовал, по выражению Лапласа, «всеобъемлющий ум», то он мог бы их однозначно предсказывать и предвычислять.

В механической картине мира последний был представлен со­стоящим из вещества, где элементарным объектом выступал атом, а все тела — как построенные из абсолютно твердых, однородных, неизменных и неделимых корпускул — атомов. Главными понятиями при описании механических процессов были понятия «тело» и «корпускула».

Движение атомов и тел представлялось как их перемещение в абсолютном пространстве с течением абсолютного времени. Эта концепция пространства и времени как арены для движу­щихся тел, свойства которых неизменны и независимы от са­мих тел, составляла основу механической картины мира.

Природа понималась как простая машина, части которой под­чинялись жесткой детерминации, которая была характерной особенностью этой картины.

Важная особенность функционирования механической карти­ны мира в качестве фундаментальной исследовательской про­граммы — синтез естественнонаучного знания на основе ре­дукции (сведения) разного рода процессов и явлений к меха­ническим.

Несмотря на ограниченность уровнем естествознания XVII в., механическая картина мира сыграла в целом положительную роль в развитии науки и философии. Она давала естественнонаучное понимание многих явлений природы, освободив их от мифологи­ческих и религиозных схоластических толкований. Она ориенти­ровала на понимание природы из нее самой, на познание есте­ственных причин и законов природных явлений.

Материалистическая направленность механической картины Ньютона не избавила ее от определенных недостатков и ограни-ченностей. Механистичность, метафизичность мышления Нью­тона проявляется, в частности, в его утверждении о том, что ма­терия — инертная субстанция, обреченная на извечное повторе­ние хода вещей, из нее исключена эволюция; вещи неподвижны, лишены развития и взаимосвязи; время — чистая длительность, а пространство — пустое «вместилище» вещества, существующее независимо от материи, времени и в отрыве от них. Ощущая не­достаточность своей картины мира, Ньютон вынужден был апел­лировать к идеям творения, отдавать дань религиозно-идеалисти­ческим представлениям.

Несмотря на свою ограниченность, механическая картина мира оказала мощное влияние на развитие всех других наук на долгое время. Экспансия механической картины мира на новые области исследования осуществлялась в первую очередь в самой физике, но потом — в других областях знаний. Освоение новых областей потребовало развития математического формализма ньютоновской теории и углубленной разработки ее концептуального аппарата.

Развитие многих областей научного познания в этот период определялось непосредственным воздействием на них идей меха­нической картины мира. Так, в эпоху господства алхимии Р. Бойль выдвинул программу, которая переносила в химию принципы и образцы объяснения, сформулированные в механике. Бойль пред­лагал объяснить все химические явления исходя из представле­ний о движении «малых частиц материи» (корпускул).

Механическая картина мира оказывала сильное влияние и на развитие биологии. Так, Ламарк, пытаясь найти естественные при­чины развития организмов, опирался на вариант механической картины мира, включавший идею «невесомых». Он полагал, что именно последние являются источником органических движений и изменения в живых существах. Развитие жизни, по его мне­нию, выступает как «нарастающее движение флюидов», которое и было причиной усложнения организмов и их изменения. До­вольно сильным влияние механической картины мира было и на знание о человеке и обществе (см. об этом тп. VIII).

Однако по мере экспансии механической картины мира на но­вые предметные области наука все чаще сталкивалась с необходи­мостью учитывать особенности этих областей, требующих новых, немеханических представлений. Накапливались факты, которые все труднее было согласовывать с принципами механической кар­тины мира. Она теряла свой универсальный характер, расщепля­ясь на ряд частнонаучных картин, начался процесс расшатывания механической картины мира. В середине XIX в. она окончательно утратила статус общенаучной.

Говоря о механической картине мира, необходимо отличать это понятие от понятия «механицизм». Если первое понятие обо­значает концептуальный образ природы, созданный естествозна­нием определенного периода, то второе — методологическую ус­тановку. А именно — односторонний методологический подход, основанный на абсолютизации и универсализации данной карти­ны, признании законов механики как единственных законов ми­роздания, а механической формы движения материи — как един­ственно возможной.

Успехи механической теории в объяснении явлений приро­ды, а также их большое значение для развития практики — для техники, для конструирования машин, для строительства, море­плавания, военного дела и т. п. и привели к абсолютизации меха­нической картины мира, которая стала рассматриваться в каче­стве универсальной.

Таким образом, естествознание рассматриваемого этапа было механистическим, поскольку ко всем процессам природы прила­гался исключительно масштаб механики. Стремление расчленить природу на отдельные «участки» и подвергать их анализу каждый по отдельности постепенно превращалось в привычку представ­лять природу состоящей из неизменных вещей, лишенных разви­тия и взаимной связи. Так сложился метафизический способ мыш­ления, одним из выражений которого и был механицизм как свое­образная методологическая доктрина.

Механицизм есть крайняя форма редукционизма. Редукцио­низм (лат. reductio — отодвигание назад, возвращение к прежне­му состоянию) — методологический принцип, согласно которому высшие формы могут быть полностью объяснены на основе зако­номерностей, свойственных низшим формам, т. е. сведены к по­следним (например, биологические явления — с помощью физи­ческих и динамических законов).

Само по себе сведение сложного к более простому в ряде слу­чаев оказывается плодотворным — например, применение мето­дов физики и химии в биологии. Однако абсолютизация принци­па редукции, игнорирование специфики уровней (т. е. того ново­го, что вносит переход на более высокий уровень организации) неизбежно ведут к заблуждениям в познании.

Таким образом, небывалые успехи механики породили пред­ставление о принципиальной сводимости всех процессов в мире к механическим. «Поэтому в XIX в. механика прямо отождествля­лась с точным естествознанием. Ее задачи и сфера ее применяе­мости казались безграничными. Еще Больцман утверждал, что мы можем понять физический процесс лишь в том случае, если объясним его механически.

Первую брешь в мире подобных представлений пробила мак-свелловская теория электромагнитных явлений, дававшая мате­матическое описание процессов, не сводя их к механике».

II. Этап зарождения и формирования эволюционных идей — с начала 30-х гг. XIX в. до конца XIX — начала XX в. Уже с конца XVIII в. в естественных науках (в том числе и в физике, которая выдвинулась на первый план) накапливались факты, эмпиричес­кий материал, которые не «вмещались» в механическую картину мира и не объяснялись ею. «Подрыв» этой картины мира шел глав­ным образом с двух сторон: во-первых, со стороны самой физики и, во-вторых, со стороны геологии и биологии.

Первая линия «подрыва» была связана с активизацией иссле­дований в области электрического и магнитного полей. Особенно большой вклад в эти исследования внесли английские ученые М. Фарадей (1791—1867) и Д. Максвелл (1831—1879). Благодаря их усилиям стали формироваться не только корпускулярные, но и континуальные («сплошная среда») представления.

Фарадей обнаружил взаимосвязь между электричеством и маг­нетизмом, ввел понятия электрического и магнитного полей, вы­двинул идею о существовании электромагнитного поля. Максвелл создал электродинамику и статистическую физику, построил тео­рию электромагнитного поля, предсказал существование элект­ромагнитных волн, выдвинул идею об электромагнитной приро­де света. Тем самым материя предстала не только как вещество (как в механической картине мира), но и как электромагнитное поле. Как писал А. Эйнштейн, «первый удар по учению Ньютона о движении как программе для всей теоретической физики нанес­ла максвелловская теория электричества...; наряду с материаль­ной точкой и ее движением появилась нового рода физическая реальность, а именно «поле».

Успехи электродинамики привели к созданию электромагнит­ной картины мира, которая объясняла более широкий круг явлений и более глубоко выражала единство мира, поскольку электриче­ство и магнетизм объяснялись на основе одних и тех же законов (законы Ампера, Ома, Био—Савара—Лапласа и др.). Поскольку электромагнитные процессы не редуцировались к механическим, то стало формироваться убеждение в том, что основные законы мироздания — не законы механики, а законы электродинамики. Механистический подход к таким явлениям, как свет, электричество, магнетизм, не увенчался успехом, и электродинамика все чаще заменяла механику.

Таким образом, работы в области электромагнетизма сильно подорвали механическую картину мира и по существу положили начало ее крушению. С тех пор механистические представления о мире были существенно поколеблены и — будучи не в силах объяс­нить новые явления — механическая картина мира начала схо­дить с исторической сцены, уступая место новому пониманию физической реальности.

Что касается второго направления «подрыва» механической картины мира, то его начало связано с именами английского гео­лога Ч. Лайеля (1797—1875) и французскими биологами Ж Б. Ла-марком (1744-1829) иЖ. Кювье (1769—1832).

Ч. Лайель в своем главном труде «Основы геологии» в трех томах (1830—1833) разработал учение о медленном и непрерывном изменении земной поверхности под влиянием постоянных геологических факторов. Он перенес нормативные принципы биологии в геологию, построив здесь теоретическую концепцию, которая впоследствии оказала влияние на биологию. Иначе говоря, принципы высшей формы он перенес (редуцировал) на познание низших форм. Ч. Лайель — один из основоположников актуалистического метода в естествознании, суть которого в том, что на основе знания о настоящем делаются выводы о прошлом (т. е. настоящее — ключ к прошлому). Однако Земля для Лайеля не развивается в определенном направлении, она просто изменяется случайным, бессвязным образом. Причем изменение — это у него лишь постепенные количественные изменения, без скачка, без перерывов постепенности, без качественных изменений. А это ме­тафизический, «плоскоэволюционный» подход.

Ж. Б. Ламарк создал первую целостную концепцию эволю­ции живой природы. По его мнению, виды животных и растений постоянно изменяются, усложняясь в своей организации в резуль­тате влияния внешней среды и некоего внутреннего стремления всех организмов к усовершенствованию. Провозгласив принцип эволюции всеобщим законом развития живой природы, Ламарк, однако, не вскрыл истинных причин эволюционного развития.

В отличие от Ламарка Ж. Кювье не признавал изменяемости видов, объясняя смену ископаемых фаун так называемой «теори­ей катастроф», которая исключала идею эволюции органического мира. Кювье утверждал, что каждый период в истории Земли за­вершается мировой катастрофой — поднятием и опусканием материков, наводнениями, разрывами слоев и др. В результате этих катастроф гибли животные и растения, и в новых условиях по­явились новые их виды, не похожие на предыдущие. Причину катастроф он не указывал, не объяснял.

Итак, уже в первые десятилетия XIX в. было фактически под­готовлено «свержение» метафизического в целом способа мыш­ления, господствовавшего в естествознании. Особенно этому спо­собствовали три великих открытия: создание клеточной теории, открытие закона сохранения и превращения энергии и разработка Дарвиным эволюционной теории.

Теория клетки была создана немецкими учеными М. Шлей-деном и Т. Шванном в 1838—1839 гг. Клеточная теория доказала внутреннее единство всего живого и указала на единство проис­хождения и развития всех живых существ. Она утвердила общ­ность происхождения, а также единство строения и развития рас­тений и животных.

Открытие в 40-х гг. XIX в. закона сохранения и превращения энергии (Ю. Майер, Д. Джоуль, Э. Ленц) показало, что призна­вавшиеся ранее изолированными так называемые «силы» — теп­лота, свет, электричество, магнетизм и т. п. — взаимосвязаны, переходят при определенных условиях одна в другую и представ­ляют собой лишь различные формы одного и того же движения в природе. Энергия как общая количественная мера различных форм движения материи не возникает из ничего и не исчезнет, а может только переходить из одной формы в другую.

Теория Ч. Дарвина окончательно была оформлена в его глав­ном труде «Происхождение видов путем естественного отбора» (1859). Эта теория показала, что растительные и животные орга­низмы (включая человека) — не богом созданы, а являются ре­зультатом длительного естественного развития (эволюции) орга­нического мира, ведут свое начало от немногих простейших су­ществ, которые в свою очередь произошли от неживой природы. Тем самым были найдены материальные факторы и причины эво­люции — наследственность и изменчивость — и движущие фак­торы эволюции — естественный отбор для организмов, живущих в «дикой» природе, и искусственный отбор для разводимых чело­веком домашних животных и культурных растений.

Впоследствии теорию Дарвина подтвердила генетика, пока­зав механизм изменений, на основе которых и способна работать теория естественного отбора. В середине XX в., особенно в связи с открытием в 1953 г. Ф. Криком и Дж. Уотсоном струк­туры ДНК, сформировалась так называемая систематическая теория эволюции, объединившая классический дарвинизм и до­стижения генетики.

Революция в естествознании конца XIX— начала XX в. и становление идей и методов неклассической науки

Как было выше сказано, классическое естествознание XVII— XVIII вв. стремилось объяснить причины всех явлений (включая социальные) на основе законов механики Ньютона. В XIX в. ста­ло очевидным, что законы ньютоновской механики уже не могли играть роли универсальных законов природы. На эту роль пре­тендовали законы электромагнитных явлений. Была создана (Фарадей, Максвелл и др.) электромагнитная картина мира. Однако в результате новых экспериментальных открытий в области строе­ния вещества в конце XIX — начале XX в. обнаруживалось мно­жество непримиримых противоречий между электромагнитной картиной мира и опытными фактами. Это подтвердил «каскад» научных открытий.

В 1895—1896 гг. были открыты лучи Рентгена, радиоактив­ность (Беккерель), радий (М. и П. Кюри) и др. В 1897 г. англий­ский физик Дж. Томсон открыл первую элементарную частицу — электрон и понял, что электроны являются составными частями атомов всех веществ. Он предложил новую (электромагнитную) модель атомов, но она просуществовала недолго.

В 1911 г. английский физик Э. Резерфорд в экспериментах обнаружил, что в атомах существуют ядра, положительно заря­женные частицы, размер которых очень мал по сравнению с раз­мерами атомов, но в которых сосредоточена почти вся масса ато­ма. Он предложил планетарную модель атома: вокруг тяжелого положительно заряженного ядра вращаются электроны. Резерфорд открыл а- и р-лучи, предсказал существование нейтрона. Но пла­нетарная модель оказалась несовместимой с электродинамикой Максвелла.

Немецкий физик М. Планк в 1900 г. ввел квант действия (по­стоянная Планка) и, исходя из идеи квантов, вывел закон излуче ния, названный его именем. Было установлено, что испускание и поглощение электромагнитного излучения происходит дискрет­но, определенными конечными порциями (квантами). Квантовая теория планка вошла в противоречие с теорией электродинамики Максвелла. Возникли два несовместимых представления о мате­рии: или она абсолютно непрерывна, или она состоит из дискрет­ных частиц. Названные открытия опровергли представления об атоме, как последнем, неделимом «первичном кирпичике» ми­роздания («материя исчезла»).

«Беспокойство и смятение», возникшие в связи с этим в фи­зике, «усугубил» Н. Бор, предложивший на базе идеи Резерфорда и квантовой теории Планка свою модель атома (1913). Он предпо­лагал, что электроны, вращающиеся вокруг ядра по нескольким стационарным орбитам, вопреки законам электродинамики не из­лучают энергии. Электрон излучает ее порциями лишь при пере­скакивании с одной орбиты на другую. Причем при переходе элек­трона на более далекую от ядра орбиту происходит увеличение энергии атома, и наоборот. Будучи исправлением и дополнением модели Резерфорда, модель Н. Бора вошла в историю атомной физики как квантовая модель атома Резерфорда—Бора.

Весьма ощутимый «подрью» классического естествознания был осуществлен А. Эйнштейном, создавшим сначала специальную (1905), а затем и общую (1916) теорию относительности. В целом его теория основывалась на том, что в отличие от механики Нью­тона, пространство и время не абсолютны. Они органически свя­заны с материей, движением и между собой. Сам Эйнштейн суть теории относительности в популярной форме выразил так: «Рань­ше полагали, что если бы из Вселенной исчезла вся материя, то пространство и время сохранились бы, теория относительности утверждает, что вместе с материей исчезли бы пространство и время». При этом четырехмерное пространство-время, в котором отсутствуют силы тяготения, подчиняется соотношениям неэвк­лидовой геометрии.

Таким образом, теория относительности показала неразрыв­ную связь между пространством и временем (она выражена в едином понятии пространственно-временного интервала), а также между материальным движением, с одной стороны, и его про­странственно-временными формами существования — с другой. Определение пространственно-временных свойств в зависимости от особенностей материального движения («замедление» време­ни, «искривление» пространства) выявило ограниченность пред­ставлений классической физики об «абсолютном» пространстве и времени, неправомерность их обособления от движущейся мате­рии. Как писал сам Эйнштейн, нет более банального утвержде­ния, что окружающий нас мир представляет собой четырехмер­ный пространственно-временной континуум.

В связи со своим фундаментальным открытием Эйнштейн произнес знаменитые слова: «Прости меня, Ньютон, — понятия, созданные тобой, и сейчас остаются ведущими в нашем физичес­ком мышлении, хотя мы теперь знаем, что если мы будем стре­миться к более глубокому пониманию взаимосвязей, то мы дол­жны будем заменить эти понятия другими, стоящими дальше от сферы непосредственного опыта».

В 1924 г. было сделано еще одно крупное научное открытие. Французский физик Луи де Бройлъ высказал гипотезу о том, что частице материи присуще и свойства волны (непрерывность), и дискретность (квантовость). Тогда, отмечал автор гипотезы, ста­новилась понятной теория Бора. Вскоре, уже в 1925—1930 гг. эта гипотеза была подтверждена экспериментально в работах Шредингера, Гейзенберга, Борна и других физиков. Это означало пре­вращение гипотезы де Бройля в фундаментальную физическую теорию — квантовую механику. Таким образом, был открыт важ­нейший закон природы, согласно которому все материальные мик­рообъекты обладают как корпускулярными, так и волновыми свой­ствами.

Один из создателей квантовой механики, немецкий физик В. Гейзенберг сформулировал соотношение неопределенностей (1927). Этот принцип устанавливает невозможность — вследствие противоречивой, корпускулярно-волновой природы микрообъек­тов — одновременно точного определения их координаты и им­пульса (количества движения). Принцип неопределенности стал одним из фундаментальных принципов квантовой механики. В философско-методологическом отношении данный принцип есть объективная характеристика статистических (а не динамических) закономерностей движения микрочастиц, связанная с их корпус кулярно-волновой природой. Принцип неопределенностей не «отменяет» причинность (она никуда не «исчезает»), а выражает ее в специфической форме — в форме статистических закономер­ностей и вероятностных зависимостей.

Все вышеназванные научные открытия кардинально измени­ли представление о мире и его законах, показали ограниченность классической механики. Последняя, разумеется, не исчезла, но обрела четкую сферу применения своих принципов — для харак­теристики медленных движений и больших масс объектов мира.

В нашу задачу не входит подробный анализ величайших дос­тижений естествознания неклассического периода Укажем лишь некоторые важнейшие философско-методологические выводы из них.

1. Возрастание роли философии в развитии естествознания и других наук.

Это обстоятельство всегда подчеркивали настоящие творцы науки. Так, М. Борн говорил, что философская сторона науки ин­тересовала его больше, чем специальные результаты. И это не случайно, ибо работа физика-теоретика «...теснейшим образом пе­реплетается с философией и что без серьезного знания философ­ской литературы его работа будет впустую». Весь вопрос, однако, в том, какой именно философии ученый отдает предпочтение.

В. Гейзенберг говорил, что физики-теоретики, хотят они этого или нет, но все равно руководствуются философией, «сознатель­но или неосознанно». Весь вопрос в том,.каковы ее качество и содержание, ибо «дурная философия исподволь губит хорошую физику». Чтобы этого не происходило — ни в физике, ни в дру­гих науках — исследователи должны руководствоваться «хоро­шей» — строго научной философией. Однако — и на это обстоя­тельство справедливо обращал внимание создатель квантовой механики —-«...ученый никогда не должен полагаться на какое-то единственное учение, никогда не должен ограничивать методы своего мышления одной-единственной философией», даже если она диалектико-материалистическая. Абсолютизация последней, канонизация ее — такое же заблуждение, как и ее полное игнори­рование.

2. Сближение объекта и субъекта познания, зависимость зна­ния от применяемых субъектом методов и средств его полу­чения.

Идея научного познания действительности в XVIII—ХГХ вв. было полное устранение познающего субъекта из научной карти­ны мира, изображение мира «самого по себе», независимо от средств и способов, которые применялись при получении необхо­димых для его описания сведений. Естествознание XX века пока­зало неотрывность субъекта, исследователя от объекта, зависи­мость знания от методов и средств его получения. Иначе говоря, картина объективного мира определяется не только свойствами самого мира, но и характеристиками субъекта познания, его кон­цептуальными, методологическими и иными элементами, его ак­тивностью (которая тем больше, чем сложнее объект).

В. Гейзенберг был первым, кто произнес фразу о том, что в общем случае разделение субъекта и объекта его наблюдения не­возможно. Формирование отчетливой философской позиции со­временного рационализма началось именно с квантовой механи­ки, давшей первые наглядные и неопровержимые доказательства включенности человека в качестве активного элемента в единый мировой эволюционный процесс.

После работ Вернадского создавалась реальная возможность нарисовать всю грандиозную картину мироздания как единого про­цесса самоорганизации от микромира до человека и Вселенной. И она нам представляется совсем по-новому и совсем не так, как она рисовалась классическим рационализмом. Вселенная — это не механизм, однажды заведенный Внешним Разумом, судьба которого определена раз и навсегда, а непрерывно развивающаяся и самоорганизующаяся система. А человек не просто активный внутренний наблюдатель, а действующий элемент системы.

Развитие науки показало, что исключить субъективное вооб­ще из познания полностью невозможно, даже там, где «Я», субъект играет крайне незначительную рол. С появлением квантовой ме­ханики возникла «философская проблема, трудность которой со­стоит в том, что нужно говорить о состоянии объективного мира, при условии, что это состояние зависит ет того, что делает наблю­датель»1. В результате существовавшее долгое время представле ние о материальном мире как о некоем «сугубо объективном», независимом ни от какого наблюдения, оказалось сильно упро­щенным. На деле практически невозможно при построении тео­рии полностью отвлечься от человека и его вмешательства в при­роду, тем более в общественные процессы.

Поэтому, строго говоря, любые явления нельзя рассматри­вать «сами по себе» в том смысле, что их познание предполагает присутствие субъекта, человека. Стало быть, не только в гумани­тарных науках, но «и в естествознании предметом исследования является не природа сама по себе, а природа, поскольку она под­лежит человеческому вопрошанию, поэтому и здесь человек опять-таки встречает самого себя»1. Без активной деятельности субъек­та получение истинного образа предмета невозможно. Более того, мера объективности познания прямо пропорциональна мере исто­рической активности субъекта. Однако последнюю нельзя абсо­лютизировать, так же как и пытаться «устранить» из познания субъективный момент якобы «в угоду» объективному. Недооцен­ка, а тем более полное игнорирование творческой активности субъекта в познании, стремление «изгнать» из процесса познания эту активность закрывают дорогу к истине, к объективному отра­жению реальности.

Воспроизводя объект так, как он есть «в себе», в формах своей деятельности, субъект всегда выражает так или иначе свое отно­шение к нему, свой интерес и оценку. Так, несмотря на самые строгие и точные методы исследования, в физику, по словам М. Борна, проникает «неустранимая примесь субъективности». Анализ квантово-механических процессов невозможен без актив­ного вмешательства в них субъекта-наблюдателя. Поскольку субъективное пронизывает здесь весь процесс исследования и в определенной форме включается в его результат, это дает «осно­вание» говорить о неприменимости в этой области знания прин­ципа объективности.

Действительно, поведение атомных объектов «самих по себе» невозможно резко отграничить от их взаимодействий с измери­тельными приборами, со средствами наблюдения, которые опре­деляют условия возникновения явлений. Однако развитие науки показало, что «исследование того, в какой мере описание физи­ческих явлений зависит от точки зрения наблюдателя, не только не внесло никакой путаницы или усложнения, но, наоборот, ока­залось неоценимой путеводной нитью при разыскании основных физических законов, общих для всех наблюдений». 3. Укрепление и расширение идеи единства природы, повышение роли целостного и субстанциального подходов.

Стремление выйти из тех или иных односторонностей, выя­вить новые пути понимания целостной структуры мира — важная особенность научного знания. Так, сложная организация биоло­гических или социальных систем немыслима без взаимодействия ее частей и структур — без целостности. Последняя имеет каче­ственное своеобразие на каждом из структурных уровней разви­тия материи. При этом к «целостной реальности» относится не только то, что видно невооруженным глазом — живые системы (особи, популяции, виды) и социальные объекты разных уровней организации. Как писал выдающийся математик Г. Вейль, «...це­лостность не является отличительной чертой только органического мира. Каждый атом уже представляет собой вполне определен­ную структуру; ее организация служит основой возможных орга­низаций и структур самой высокой сложности».

Развитие атомной физики показало, в частности, что объекты, называвшиеся раньше элементарными частицами, должны сегод­ня рассматриваться как сложные многоэлементные системы. При этом «набор» элементарных частиц отнюдь не ограничивается теми частицами, существование которых доказано на опыте.

Субстанциальный подход, т. е. стремление свести все измен­чивое многообразие явлений к единому основанию, найти их «первосубстанцию», — важная особенность науки. Попытки достиг­нуть единого понимания, исходящего из единого основания, на­мерение охватить единым взором крайне разнородные явления и дать им единообразное объяснение не беспочвенны и не умозри­тельны. Так, физика исходит из того, что «...в конечном счете природа устроена единообразно и что все явления подчиняются единообразным законам. А это означает, что должна существовать возможность найти в конце концов единую структуру, лежа­щую в основе разных физических областей».

Это стремление к всеохватывающему объединению, попытки истолковать все физические и другие явления с единой точки зре­ния, понять природу в целом пронизывают всю историю науки. Все ученые, исследующие объективную действительность, хотят постигнуть ее как целостное, развивающееся единство, понять ее «единый строй», «внутреннюю гармонию». Для творцов теории относительности и квантовой физики было характерно «стремле­ние выйти из привычной роли мысли и вступить на новые пути понимания целостной структуры мира..., стремление к цельному пониманию мира, к единству, вмещающему в себя напряжение противоположностей»2. Последнее обстоятельство наиболее чет­ко было выражено в принципе дополнительности Н. Бора.

История естествознания — это история попыток объяснить раз­нородные явления из единого основания. Сейчас стремление к единству стало главной тенденцией современной теоретической физики, где фундаментальной задачей является построение еди­ной теории всех взаимодействий, известных сегодня: электромаг­нитного, слабого, сильного и гравитационного. Общепризнанной теории Великого объединения пока нет. Однако «Теория Всего» в широком смысле не может быть ограничена лишь физическими явлениями. И это хорошо понимают широко мыслящие физики. 4. Формирование нового образа детерминизма и его «ядра» — причинности.

История познания показала, что детерминизм есть целостное формообразование и его нельзя сводить к какой-либо одной из его форм или видов. Классическая физика, как известно, основы­валась на механическом понимании причинности («лапласовский детерминизм»). Становление квантовой механики выявило непри­менимость здесь причинности в ее механической форме. Это было связано с признанием фундаментальной значимости нового клас­са теорий — статистических, основанных на вероятностых представлениях. Тот факт, что статистические теории включают в себя неоднозначность и неопределенность, некоторыми философами и учеными был истолкован как крах детерминизма вообще, «исчезновение причинности».

В основе данного истолкования лежал софистический прием: отождествление одной из форм причинности — механистическо­го детерминизма — с детерминизмом и причинностью вообще. При этом причина понималась как чисто внешняя сила, воздей­ствующая на пассивный объект, абсолютизировалась ее низшая — механическая — форма, причинность как таковая смешивалась с «непререкаемой предсказуемостью». «Так смысл тезиса о причин­ности постепенно сузился, пока наконец не отождествился с пре­зумпцией однозначной детерминированности событий в природе, а это в свою очередь означало, что точного знания природы или определенной ее области было бы — по меньшей мере в принци­пе — достаточно для предсказания будущего». Такое понимание оказалось достаточным только в ньютоновской, но не в атомной физике, которая с самого начала выработала представления, по сути дела не соответствующие узкоинтерпретированному понятию причинности.

Как доказывает современная физика, формой выражения при­чинности в области атомных объектов является вероятность, по­скольку вследствие сложности протекающих здесь процессов (двойственный, корпускулярно-волновой характер частиц, влия­ние на них приборов и т. д.) возможно определить лишь движе­ние большой совокупности частиц, дать их усредненную характе­ристику, а о движении отдельной частицы можно говорить лишь в плане большей или меньшей вероятности.

Поведение микрообъектов подчиняется не механико-динами­ческим, а статистическим закономерностям, но это не значит, что принцип причинности здесь не действует. В квантовой физике «исчезает» не причинность как таковая, а лишь традиционная ее интерпретация, отождествляющая ее с механическим детерминиз­мом как однозначной предсказуемостью единичных явлений. По этому поводу М. Борн писал: «Часто повторяемое многими ут­верждение, что новейшая физика отбросила причинность, цели­ком необоснованно. Действительно, новая физика отбросила или видоизменила многие традиционные идеи; но она перестала бы быть наукой, если бы прекратила поиски причин явлений».

Этот вывод поддерживали многие крупные творцы науки и философии. Так, выдающийся математик и философ А. Пуанкаре совершенно четко заявлял о том, что «наука явно детерминистична,- она такова по определению. Недетерминистической науки не может существовать, а мир, в котором не царит детерминизм, был бы закрыт для ученых»1. Крупный современный философ и логик Г. X. фон Вригг считает несомненным фактом, что каузаль­ное мышление как таковое «не изгоняется из науки подобно зло­му духу». Поэтому философские проблемы причинности всегда будут центральными и в философии, и в науке — особенно в тео­рии научного объяснения.

Однако в последнее время — особенно в Связи с успешным развитием синергетики — появились утверждения о том, что «со­временная наука перестала быть детерминистической» и что «не­стабильность в некотором отношении заменяет детерминизм» (И. Пригожий). Думается, это слишком категорические и «силь­ные» утверждения. 5. Глубокое внедрение в естествознание противоречия и как су­щественной характеристики его объектов, и как принципа их познания.

Исследование физических явлений показало, что частица-вол­на — две дополнительныестороны единой сущности. Квантовая механика синтезирует эти понятия, поскольку она позволяет пред­сказать исход любого опыта, в котором проявляются как корпус­кулярные, так и волновые свойства частиц. Притом проблема вы­бора в данных условиях между этими противоположностями по­стоянно воспроизводится в более глубокой и сложной форме. Та­ким образом, в квантовой механике все особенности микрообъек­та можно понять только исходя из его корпускулярно-волновой природы.

Природа микрочастицы внутренне противоречива (есть диалек­тическое противоречие), и соответствующее понятие должно выра­жать это объективное противоречие. Иначе оно не будет адекватно отражать свой объект, так как он есть в себе, а стало быть, будет выражать лишь часть истины, а не всю ее в целом. С достаточной определенностью проблему синтеза противоположных представ­лений, внутреннего единства противоположностей (волновых и кван­товых свойств света) поставил А. Эйнштейн. Оправдалось глубо­кое научное предвидение творца теории относительности, который предсказывал, что внутреннее противоречие теории должно быть разрешено в ходе дальнейшего развития физического знания. За­фиксированная Эйнштейном полярность волновых и корпускуляр­ных характеристик света привела его к выводу о необходимости синтеза данных противоположностей: «Следующая фаза развития теоретической физики даст нам теорию света, которая будет в ка­ком-то смысле слиянием волновой теории света с теорией истече­ния». Такой фазой и стала квантовая механика.

В ходе дальнейшего развития квантовых представлений было обнаружено, что в процессе объяснения загадок атомных явлений противоречия не исчезают, не «устраняются» из теории. Наобо­рот, происходит их нарастание и обострение. Это свидетельство­вало не о слабости, а о силе новых теоретических представлений, которые предстали не как «логические» противоречия (путаница мысли), а как такие, которые имеют объективный характер, отра­жают реальные противоречия, присущие самим атомным явле­ниям. «Удивительнейшим событием тех лет был тот факт, что по мере этого разъяснения парадоксы квантовой теории не исчезали, а наоборот, выступали во все более явной форме и приобретали все большую остроту... В это время многие физики были уже убеждены в том, что эти явные противоречия принадлежат к внут­ренней природе атомной физики».

Попытки осознать причину появления противоречивых обра­зов, связанных с объектами микромира, привели Н. Бора к фор­мулированию принципа дополнительности. Согласно этому прин­ципу, для полного описания квантово-механических явлений не­обходимо применять два взаимоисключающих (дополнительных) набора классических понятий (например, частиц и волн). Только совокупность таких понятий дает исчерпывающую информацию об этих явлениях как целостных образованиях. Изучение взаимодополнительных явлений требует взаимоисключающих экспери­ментальных установок.

Оценивая великое методологическое открытие Бора, М. Борн писал: «Принцип дополнительности представляет собой совершен­но новый метод мышления. Открытый Бором, он применим не только в физике. Метод этот приводит к дальнейшему освобождению от традиционных методологических ограничений мышле­ния, обобщая важные результаты»1. В связи с этим Борн отмечал, что атомная физика учит нас не только тайнам материального мира, но и новому методу мышления, 6. Определяющее значение статистических закономерностей по отношению к динамическим.

В законах динамического типа предсказания имеют точно-оп­ределенный, однозначный характер. Это было присуще класси­ческой физике, где «если мы знаем координаты и скорость мате­риальной точки в известный момент времени и действующие на нее силы, мы можем предсказать ее будущую траекторию».

Законы же квантовой физики — это законы статистического характера, предсказания на их основе носят не достоверный, а лишь вероятностный характер. «Квантовая физика отказывается от ин­дивидуальных законов элементарных частиц и устанавливает не­посредственно статистические законы, управляющие совокупно­стями. На базе квантовой физики невозможно описать положе­ние и скорость элементарной частицы или предсказать ее буду­щий путь, как это было в классической физике. Квантовая физи­ка имеет дело только с совокупностями».

Законы статистического характера являются основной харак­теристикой современной квантовой физики. Поэтому метод, при­меняемый для рассмотрения движения планет, здесь практичес­ки бесполезен и должен уступить место статистическому методу, законам, управляющим изменениями вероятности во времени.

В. Гейзенберг подчеркивал, что «законы квантовой механики по необходимости имеют статистический характер... Парадоксаль­ность того обстоятельства, что различные эксперименты выявля­ют то волновую, то корпускулярную природу атомной материи, заставляют формулировать статистические закономерности». Ре­шающая роль последних в квантовой механики обусловлена как корпускулярно-волновым дуализмом, так и открытым Гейзенбергом соотношением неопределенностей. В свою очередь последнее он считал специфическим случаем более общей ситуации дополнительности.

Развитие квантовой механики показало:

а) Предсказания квантовой механики неоднозначны, они дают лишь вероятность того или иного результата.

б) Причинность в лапласовском смысле нарушена, но в более точном квантово-механическом смысле она соблюдается.

в) Причина вероятностного характера предсказаний в том, что свойства микроскопических объектов нельзя изучать, отвле­каясь от способа наблюдения, В зависимости от него элект­рон проявляет себя либо как волна, либо как частица, либо как нечто промежуточное («и—и», а не только «или—или»). Мы неизбежно пользуемся субъективными инструментами для описания объективного.

Таким образом, огромный прогресс наших знаний о строении и эволюции материи, достигнутый естествознанием, начиная со второй половины XIX в., во многом и решающем обусловлен ме­тодами исследований, опирающимися на теорию вероятностей. Поэтому везде, где наука сталкивается со сложностью, с анали­зом сложно-организованных систем, вероятность приобретает важ­нейшее значение. 7. Кардинальное изменение способа (стиля, стуктуры) мышле­ния, вытеснение метафизики диалектикой в науке. Эту сторону, особенность неклассического естествознания под­черкивали выдающиеся его представители. Так, Гейзенберг не­однократно говорил о границах механического типа мышления, о недостаточности ньютоновского способа образования понятий, о радикальных изменениях в основах естественнонаучного мышле­ния, указывал на важность требований об изменении структуры мышления.

Он отмечал, что, во-первых, введению нового, диалектическо­го в своей сущности, мышления «нас вынуждает предмет, что сами явления, сама природа, а не какие-либо человеческие авторитеты заставляют нас изменить структуру мышления». Новая структура мышления позволяет добиться в науке большего, чем старая, т. е. новое оказывается более плодотворным. В-третьих, «фундаменталь­ные сдвиги» в структуре мышления могут занять годы и даже деся­тилетия — что, кстати говоря, и происходит.

Гейзенберг ставил вопрос о том, что наряду с обычной арис­тотелевской логикой, т. е. логикой повседневной жизни, суще­ствует неаристотелевская логика, которую он назвал квантовой. По аналогии с тем, что классическая физика содержится в кванто­вой в качестве предельного случая, «классическая, аристотелев­ская логика содержалась бы в квантовой в качестве предельного случая и во множестве рассуждений принципиально допускалось бы использование классической логики».

Вьщающийся ученый сетовал на то, что «физики до сих пор не применяют квантовую логику систематически», и был твердо уверен в том, что квантовая логика представляет собой более об­щую логическую схему, чем аристотелевская.

Гейзенбергу в этом вопросе вторит французский философ и методолог науки Г. Башляр, который также ратует за введение в науку новой, неаристотелевской логики. Последнюю он рассмат­ривает как логику, «вобравшую в себя движение», ставшую «жи­вой» и развивающейся, в отличие от статичной аристотелевской логики. Процесс изменения в логике он связывает с изменениями в науке: статичный объект классической науки требовал статич­ной логики. Нестатичный (изменяющийся, развивающийся) объект неклассической науки приводит к необходимости введения дви­жения в логику — как на уровне понятийного аппарата, так и ло­гических связей. 8. Изменение представлений о механизме возникновения науч­ной теории. (Об этой особенности см. гл. III, §4.) Что касает­ся постнеклассической науки, то ей далее будет специально посвящена гл. VII.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: