Кривые второго порядка

Алгебраическое уравнение второго порядка на плоскости описывает кривую второго порядка, другими словами, любое уравнение вида определяет либо одну из кривых: эллипс, гипербола, парабола; либо распадается на две прямые, ибо точек, удовлетворяющих данному уравнению на плоскости нет.

Эллипс

Каноническое уравнение эллипса, с центром в начале координат:

Полуосями этого эллипса являются по оси ОХ- отрезок а, и по оси ОУ- отрезок b. Таким образом, эллипс имеет две оси симметрии: ось ОХ и ось ОУ. Четыре вершины: точки с координатами (-а;0); (а;0); (0;-b); (0;b). Если величина а b, то . На большей оси в точках с координатами и (с, 0) находятся фокусы эллипса. Эксцентриситетом эллипса называется ,т.е. отношение половины расстояния между фокусами к большей полуоси. Для эллипса

Характеристическое свойство эллипса: Эллипсом называется геометрическое место точек, сумма расстояний от каждой из которых до двух данных точек той же плоскости, называемых фокусами, постоянна и равна удвоенной большей полуоси.

-каноническое уравнение эллипса,

центр симметрии которого находится в точке Q(,

полуоси эллипса: по ОХ равна a, по оси ОУ равна b.

Фокусы находятся в точках:

Пример: Построить эллипс, каноническое уравнение которого:

,найти его фокусы и эксцентриситет.

Решение: Центром симметрии эллипса является точка Q(2; -3), полуоси эллипса: а=3; b=2; ; фокусы эллипса находятся в точках: .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: