Гипербола

Каноническое уравнение гиперболы, с центром в начале координат:

Полуосями этой гиперболы являются по оси ОХ- отрезок а, и по оси ОУ- отрезок b. Таким образом, гипербола имеет две оси симметрии: ось ОХ и ось ОУ. Четыре вершины: точки с координатами (-а;0); (а;0); (0;-b); (0;b). Если величина , то полуось а называется действительной, b-мнимой. . На продолжении действительной оси в точках с координатами и (с, 0) находятся фокусы гиперболы. Эксцентриситетом гиперболы называется ,т.е. отношение половины расстояния между фокусами к действительной полуоси. Для гиперболы

Гипербола имеет две асимптоты, уравнения которых:

Гиперболой, сопряженной к данной, называется гипербола:

Для этой гиперболы а- мнимая полуось, b-действительная. . Фокусы находятся в точках: и (0, с).

Характеристическое свойство гиперболы:

гиперболой называется геометрическое место точек, модуль разности расстояний от каждой из которых до двух данных точек этой же плоскости, называемых фокусами постоянна и равна удвоенной действительной полуоси.

-каноническое уравнение гиперболы,

центр симметрии которого находится в точке Q(,

полуоси гиперболы: действительная по ОХ равна a, мнимая по оси ОУ равна b.

Фокусы находятся в точках:

Пример: Построить гиперболу, каноническое уравнение которой:

найти фокусы и эксцентриситет.

Решение: центр симметрии гиперболы находится в точке:Q(1,-2), действительная полуось а=4; мнимая полуось b=3.

с=5.

Фокусы:

Эксцентриситет: =1,25.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: