Краткий исторический обзор

Лекция 1. Введение в курс. Краткий исторический обзор. Строительные свойства грунтов. Основные закономерности механики грунтов. Закон уплотнения Карла Терцаги

Содержание, цели и задачи курса

Механика грунтов изучает проблемы прочности и устойчивости грунтовых массивов и определяет условия их использования в качестве оснований объектов строительства. Настоящий курс являются естественным продолжение курсов «Инженерная геология» и «Инженерные изыскания в строительстве». Основной целью курса является изложение основ инженерной теории расчета оснований по предельным состояниям I и II группы в интеграции с нормами строительного проектирования. Основными задачами, решаемыми в процессе изучения курса, являются: установление основных закономерностей механики грунтов и обобщение их в виде законов; изучение распределения напряжений в грунтовом массиве при действии различных нагружающих факторов; исследование прочности оснований и грунтовых массивов с использованием теории предельного равновесия; изучение методов расчета осадок оснований фундаментов, в том числе в условиях незавершенной консолидации грунтов, слагающих основание.

Краткий исторический обзор

Первой фундаментальной работой по механике грунтов принято считать исследование Кулона (Франция, 1773) по теории прочности сыпучих тел, известное в современной механике как закон Кулона-Мора. Академик Фусс (Россия, 1801) и инженер Винклер (Франция, 1867) предложили механические модели грунтового основания для расчета конструкций, взаимодействующих с грунтовой средой. Закономерности фильтрационных процессов в песчаных грунтах были впервые установлены Дарси (Франция, 1856) и обобщены в современной механике как закон ламинарной фильтрации Дарси. Труд профессора Буссинеска (Франция, 1885) “О распределении напряжений в упругой почве от сосредоточенной силы” до настоящего времени изучается в курсе механики грунтов и является основополагающим в теории распределения напряжений в грунтовой среде. Механика грунтов как самостоятельная дисциплина возникла с момента опубликования монографии профессора Терцаги (Германия, 1925) “Строительная механика грунтов”. Именно ему принадлежит установление основополагающей в теории расчета осадок зависимости, известной как закон уплотнения Терцаги. Существенное развитие механика грунтов получила в работах ученых русской школы: Пузыревский А.П. (1923), Герсеванов Н.М. (1931), Флорин В.А. (1936), Соколовский В.В. (1942), Егоров К.Е. (1948), Березанцев В.Г. (1948). Первый курс лекций по механике грунтов был подготовлен в СССР профессором Цытовичем Н.А. (1934). Достижения украинских ученых в области механики грунтов отражены в работах Швеца В.Б., Гольдштейна М.Н., Клепикова С.Н. и др.

3. Грунт как объект исследования и его свойства

В соответствии со строительной классификацией грунты подразделяются на скальные, крупнообломочные, песчаные и пылевато-глинистые. Скальные грунты детально изучаются в связи со строительством подземных горных выработок в курсе «Механика горных пород». В механике грунтов предметом исследований являются последние три вида грунтов. При этом крупнообломочные и песчаные грунты объединяются в группу несвязных или сыпучих грунтов, а пылевато-глинистые грунты рассматриваются как связные. С позиций общей механики грунт (рис. 1.1) представляет собой сложную термодинамическую систему, которая по принятой классификации является многофазной и неоднородной. В составе объема грунта присутствуют вещества в трех фазовых состояниях: минеральные частицы (твердая фаза); грунтовая вода (жидкая фаза); газ и пар (газообразная фаза). Минеральные частицы могут иметь размеры от десятков миллиметров до долей микрона. Это порождает большое разнообразие видов грунта, существенно отличающихся своими свойствами. Пространство между минеральными частицами, заполненное водой, газом или паром, называют порами. Давление в порах называют поровым давлением. Оно может относиться исключительно к воде, если все поры заполнены водой, исключительно к газу при отсутствии воды в порах или к поверхности раздела фаз «вода – газ (пар)». Газ и пар могут также содержаться в пузырьках или в растворенном (газ) в воде виде. Систему минеральных частиц, составляющих грунт, называют его скелетом. Между минеральными частицами грунта могут существовать цементационные или коллоидные связи, прочность которых определяет степень связности грунта. Природа этих связей, называемых структурными, как и любых связей в твердом теле, электрическая. Микроскопические свойства грунта, включая взаимодействия составляющих его компонентов на молекулярном уровне, изучаются в курсе «Грунтоведение». Если напряжения в скелете грунта не превышают прочности связей между минеральными частицами (эта прочность называется структурной), скелет деформируется упруго. Напряжения в скелете в общем случае не совпадают с поровым давлением. Сопротивление грунта нагружению определяется суммой напряжений в скелете и порового давления.

В зависимости от температуры и давления компоненты, составляющие грунт, могут претерпевать процессы фазовых переходов. Например, при низких температурах грунтовая вода может частично переходить в лед (твердая фаза). При извлечении образца грунта с большой глубины происходит его упругое расширение в связи с уменьшением напряжений на поверхности выделенного объема до нуля. Расширение грунта может привести к отрицательному (по сравнению с атмосферным) значению порового давления. В результате этого могут протекать процессы газовыделения из поровой воды и превращения части поровой воды в пар (парообразование). Наоборот, при повышении порового давления могут наблюдаться процессы газорастворения и конденсации пара. Эти процессы существенно зависят от температуры и учитываются при расчетах гидротехнических сооружений.

Грунт является открытой термодинамической системой в отношении процессов массопереноса (воды или минеральных частиц). Явление массопереноса в форме движения поровой воды учитывается в теории фильтрационной консолидации грунтов (выдавливание воды из пор при уменьшении их объема под действием нагрузки). Явление массопереноса в форме перемещения минеральных частиц грунта учитывается при изучении суффозионных процессов в грунтах (вымыв из грунта компонентов скелета под воздействием фильтрационного потока). Минеральные частицы специфических грунтов, а также связи между ними могут состоять из растворимых солей. В этом случае миграция поровой воды может приводить к химической суффозии (растворение и перенос вещества в растворенном виде). Присутствие в поровой воде растворов солей, кислот и щелочей делает ее агрессивной по отношению к конструкциям фундаментов.

Отмеченные здесь особенности поведения грунтов при изменении давлений и температуры изучаются в специальных разделах механики грунтов. Классическая механика грунтов основана на ряде следующих допущений:

а) грунт деформируется как квазиоднородное упругое тело, если напряжения в скелете грунта не превышают его структурную прочность;

б) поровая вода является несжимаемой;

в) присутствие в порах газа и пара не оказывает существенного влияния на процесс деформирования грунта;

г) сжимаемость минеральных частиц грунта пренебрежимо мала;

д) деформируемость грунта под нагрузкой обусловлена, в основном, переупаковкой скелета после разрушения структурных связей, приводящей к изменению объема пор.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: