Теоретические сведения. Для создания требуемых параметров микроклимата в производственном помещении применяют системы вентиляции и кондиционирования воздуха

Для создания требуемых параметров микроклимата в производственном помещении применяют системы вентиляции и кондиционирования воздуха, а также различные отопительные устройства. Вентиляция - это смена воздуха в помещении в целях поддержания соответствующих метеорологических условий и чистоты воздушной среды. Вентиляция помещений достигается удалением из них нагретого или загрязненного воздуха и подачей чистого наружного воздуха.

По способу перемещения воздуха вентиляция может быть естественной, либо с механическим побуждением к движению воздушной массы; возможно также сочетание этих двух способов.

При естественной вентиляции воздух перемещается из - за разности температур и молекулярных весов последнего в помещении и снаружи, а также в результате ветрового давления (действия ветра). Наиболее распространенные способы естественной вентиляции - инфильтрация, проветривание, аэрация.

Инфильтрация - это неорганизованный воздухообмен через неплотности в притворах окон и дверей, а также поры материалов конструктивных элементов зданий.

Проветривание - это воздухообмен через открытые проемы окон и дверей при постоянной температуре. Постоянство температуры необходимо для предотвращения туманообразования и конденсации водяных паров на поверхности стен и окон.

Аэрация - организованная общеобменная естественная вентиляция в производственном помещении при заданных параметрах микроклимата.

При механической вентиляции воздух перемещается с помощью специальных воздуходувных машин - вентиляторов, создающих определенное давление и служащих для перемещения воздушной массы в вентиляционной сети. Чаще всего на практике используются осевые и радиальные вентиляторы.

По месту действия вентиляция бывает общеобменной и местной.
Общеобменная вентиляция обеспечивает поддержание требуемых параметров воздушной среды во всем объеме помещения, а местная - в определенной его части.

Воздух, всасываемый вентиляторами из атмосферы, после очистки и подогрева поступает в специальные каналы, называемые воздуховодами, и разводится по производственному помещению. Такая вентиляция называется приточной. Нагретый воздух из помещения, содержащий вредные примеси и водяные пары, отводится из помещения с помощью системы вытяжной вентиляции.

Приточная и вытяжная ветви вентиляции могут быть объединены, в этом случае система вентиляции называется приточно-вытяжной. Большое распространение на практике получила приточно-вытяжная вентиляция с рециркуляцией воздуха. Для нее характерно использование части воздуха, удаляемого из помещения и прошедшего очистку в системе приточной вентиляции. При этом рециркулирующий воздух разбавляется частью свежего воздуха, поступающего из атмосферы. Использование такой системы вентиляции позволяет снизить расходы на очистку воздуха, поступающего из атмосферы, и на его нагрев в холодное время года.

Для создания требуемых параметров микроклимата на определенном участке производственного помещения служит местная приточная вентиляция. Различают следующие устройства местной приточной вентиляции - воздушные души и оазисы, а также воздушно-тепловые
завесы.

Воздушные души применяются для защиты работающих от воздействия теплового излучения интенсивностью 350 Вт/м2 и более. Принцип действия этих устройств основан на обдуве работающего струей увлажненного воздушного потока, скорость которого составляет 1 - 3,5 м/с. При этом увеличивается теплоотдача организма в окружающую среду.

В воздушных оазисах, представляющих собой часть производственного помещения, ограниченного со всех сторон переносными перегородками, создаются требуемые параметры микроклимата. Воздушные оазисы используются в горячих цехах.

Для защиты людей от переохлаждения в холодное время года в дверных проемах и воротах устраивают воздушные и воздушно-тепловые завесы, в которых теплый воздух подается под углом к холодному воздушному потоку, поступающему в помещение. При этом снижается скорость либо изменяется направление холодного воздушного потока, уменьшая вероятность возникновения сквозняков в производственном помещении. Воздушно-тепловые завесы действуют на станциях метрополитена и в дверях крупных магазинов.

В настоящее время для поддержания требуемых параметров микроклимата широко применяются установки для кондиционирования воздуха (кондиционеры). Кондиционированием воздуха называется создание и автоматическое поддержание в производственных или бытовых помещениях, независимо от внешних метеорологических условий, постоянных или изменяющихся по определенной программе параметров микроклимата (температура, влажность, чистота и скорость движения воздуха), сочетание которых создает комфортные условия для труда или требуется для нормального протекания технологического процесса. Кондиционер - это автоматизированная вентиляционная установка, которая поддерживает в помещении заданные параметры микроклимата. Эксплуатация установок для кондиционирования воздуха обычно дороже, чем эксплуатация вентиляционных систем.

Для эффективной работы системы общеобменной вентиляции при поддержании требуемых параметров микроклимата количество воздуха, поступающего в помещение в единицу времени L пр, должно быть практически равно количеству воздуха удаляемого из него L выт и соответствовать количеству примесей, выделяемых в помещении в единицу времени.

В данной лабораторной работе в качестве вредности, которую нужно удалить, рассматривается избыточное тепло. Требуемая величина воздухообмена для удаления избыточного тепла из помещения Q изб кДж/ч определяется выражением

L пр = Q изб / c ×r×(t удt пр), м3/ч, (1)

где L пр - требуемое количество приточного воздуха, м3/ч; с - удельная теплоемкость воздуха при постоянном давлении, равная 1 кДж/кг×град; r - плотность приточного воздуха, кг/м3; t уд - температура удаляемого воздуха, ºС; t пр - температура приточного воздуха, ºС.

Если в производственном помещении находятся различные источники тепла, температура которых превышает температуру человека, то тепло от них самопроизвольно переходит к менее нагретому телу, т.е. к человеку. Различают три принципиально разных элементарных способа распространения тепла - теплопроводность, конвекцию и тепловое излучение.

Теплопроводность - перенос тепла вследствие беспорядочного (теплового) движения микрочастиц (атомов, молекул или электронов) тел непосредственно соприкасающихся друг с другом.

Конвекция - перенос тепла вследствие движения и перемешивания макроскопических объемов газа или жидкости.

Тепловое излучение - распространение электромагнитных колебаний с различной длиной волны, обусловленное тепловым движением атомов или молекул излучающего тела.

В реальных условиях тепло передается не каким-либо одним из указанных способов, а комбинированным. Тепло, поступающее в производственное помещение от различных источников, влияет на температуру воздуха в нем. В производственных помещениях с большим тепловыделением приблизительно 2/3 тепла поступает за счет излучения, а практически все остальное тепло приходится на долю конвекции.

Тепловыделение в помещении от солнечной радиации учитывается в теплый период года при температуре наружного воздуха более 10 ºС. Тепло поступает в помещение через остекленные поверхности.

Количество тепла Q р, поступающего в помещение за счет солнечной радиации, для застекленных поверхностей определяется по формуле

Q р = F о q о A о, (2)

где F о - площадь поверхности остекления; q о - величина солнечной радиации через поверхности остекления, зависящая от ориентации по сторонам света, кДж/м2×ч (см. планшет 1, табл.1); A о - коэффициент зависящий от характеристики остекления и его загрязнения. Значения коэффициента A о для различных видов остекления и состояния поверхности остекления:

двойное остекление в одной раме 1,15

одинарное остекление 1,45

обычное загрязнение стекла 0,8

сильное загрязнение стекла 0,7

застекление матовыми стеклами 0,4

Человек в процессе труда постоянно находится в состоянии теплового равновесия с окружающей средой. Величина тепловыделения организмом человека зависит от степени его физического напряжения и параметров микроклимата в производственном помещении и составляет в состоянии покоя 86 Вт, при тяжелой физической работе до 500 Вт. (см. планшет 1, табл.2).

При работе вентиляционной системы для эффективного удаления избытков тепла температура приточного воздуха должна быть на 5 - 8 °С ниже температуры воздуха в рабочей зоне.

Определение производительности вентиляционной
установки

Объем подаваемого или удаляемого вентиляцией воздуха определяют по формуле

L = F×v ×3600 м3/ч, (3)

где v - скорость движения воздуха, м/с; F - площадь сечения отверстий или воздуховода, м2.

Поэтому для оценки производительности механической вентиляционной установки необходимо определить скорость движения воздуха, проходящего по закрытому воздуховоду.

В основе описания движения воздуха лежат два фундаментальных закона - закон сохранения количества вещества (в гидро- и аэродинамике закон постоянства потока) и закон сохранения энергии (в гидро- и аэродинамике при установившемся или стационарном режиме уравнение Бернулли).

По закону постоянства потока

П = m / t = const, кг/с,

где П - величина потока; m - масса вещества; t - время.

Если плотность жидкости или газа равна r, то через сечение площадью F проходит со скоростью v поток жидкости или газа, равный П = r× F × v, кг/с.

Для двух произвольных сечений потока площадью F 1 и F 2 закон постоянства потока может быть выражен соотношением

F 1× v 1 = r× F 2× v 2 или F 1× v 1 = F 2× v 2,

т.е. чем меньше площадь поперечного сечения воздуховода, тем с большей скоростью движется поток, и наоборот.

Уравнение Бернулли записывается в виде

v 12 / 2 + r× g×h 1 + P 1 = r× v 22 / 2 + r× g×h 2 + P 2,

или

v 2 / 2 + r× g×h + P = const

для любых сечений потока, где v 1, v 2 - скорость потока жидкости или газа при входе в трубу и выходе из нее, ρ - плотность газа или жидкости, P 1, P 2 - давление газа или жидкости при входе в трубу и выходе из нее, g - ускорение свободного падения, h 1, h 2 - расстояние между центром сечения трубы и некоторым уровнем, принятым за нулевой (рис.2).

В уравнении Бернулли слагаемое r× v 2 / 2 = P дин определяет динамическое давление, а r gh + P = P ст - статическое давление. Для горизонтальной линии потока, если h 1 = h 2, уравнение Бернулли принимает вид

v 12 / 2 + P 1 = r× v 22 / 2 + P 2.

Следовательно, статическое давление оказывается меньше там, где скорость течения жидкости или газа больше (т.е. где меньше сечение трубопровода), и наоборот.

Полное или общее давление P п - алгебраическая сумма статического и динамического давлений P п = P дин + P ст.

В нагнетающих воздуховодах расположенных в системе после вентилятора, давление выше атмосферного. Однако практика измерений показывает, что в реальных воздуховодах скорость движения газа всегда неравномерна вследствие действия сил трения. В некоторых точках поперечного сечения воздуховода наблюдаются нулевые или даже отрицательные значения динамического давления, что указывает на наличие обратных потоков воздуха вследствие образования вихрей и характеризует воздуховод как гидравлически шероховатый. Поэтому при измерении динамического давления производится несколько замеров в сечении воздуховода с последующим усреднением результатов.





Подборка статей по вашей теме: