В декартовых координатах каждая плоскость определяется уравнением первой степени относительно неизвестных х, у и z и каждое уравнение первой степени с тремя неизвестными определяет плоскость.
Возьмем произвольный вектор с началом в точке . Выведем уравнение геометрического места точек М(x,y,z), для каждой из которых вектор перпендикулярен вектору . Запишем условие перпендикулярности векторов:
(13.1)
Полученное уравнение линейное относительно x, y, z, следовательно, оно определяет плоскость, проходящую через точку перпендикулярно вектору . Вектор называют нормальным вектором плоскости. Раскрывая скобки в полученном уравнении плоскости и обозначая число буквой D, представим его в виде:
Ax + By + Cz + D = 0. (13.2)
Это уравнение называют общим уравнением плоскости. А, В, С и D – коэффициенты уравнения, А2 + В2 + С2 0.
1. Неполные уравнения плоскости.
Если в общем уравнении плоскости один, два или три коэффициента равны нулю, то уравнение плоскости называют неполным. Могут представиться следующие случаи:
1) D = 0 – плоскость проходит через начало координат;
2) А = 0 – плоскость параллельна оси Ох;
3) В = 0 – плоскость параллельна оси Оу;
4) С = 0 – плоскость параллельна оси Оz;
5) А = В = 0 – плоскость параллельна плоскости ХОY;
6) А = С = 0 – плоскость параллельна плоскости ХОZ;
7) В = С = 0 – плоскость параллельна плоскости YOZ;
8) А = D = 0 – плоскость проходит через ось Ох;
9) В = D = 0 – плоскость проходит через ось Оу;
10) С = D = 0 – плоскость проходит через ось Оz;
11) А = В = D = 0 – плоскость совпадает с плоскостью XOY;
12) А = С = D = 0 – плоскость совпадает с плоскостью XOZ;
13) С = В = D = 0 – плоскость совпадает с плоскостью YOZ.
2. Уравнение плоскости в отрезках.
Если в общем уравнении плоскости D 0, то его можно преобразовать к виду
, (13.3)
которое называют уравнением плоскости в отрезках. - определяют длины отрезков, отсекаемых плоскостью на координатных осях.
3. Нормальное уравнение плоскости.
Уравнение
, (13.4)
где - направляющие косинусы нормального вектора плоскости , называют нормальным уравнением плоскости. Для приведения общего уравнение плоскости к нормальному виду его надо умножить на нормирующий множитель : ,
при этом знак перед корнем выбирают из условия .
Расстояние d от точки до плоскости определяют по формуле: .
4. Уравнение плоскости, проходящей через три точки
.
Возьмем произвольную точку плоскости М(x,y,z) и соединим точку М1 с каждой из трех оставшихся. Получим три вектора . Для того, чтобы три вектора принадлежали одной плоскости, необходимо и достаточно, чтобы они были компланарны. Условием компланарности трех векторов служит равенство нулю их смешанного произведения, то есть .
Записывая это равенство через координаты точек, получим искомое уравнение:
. (13.5)
5. Угол между плоскостями.
Плоскости могут быть параллельны, совпадать или пересекаться, образуя двугранный угол . Пусть две плоскости заданы общими уравнениями и . Чтобы плоскости совпадали, нужно, чтобы координаты любой точки, удовлетворяющей первому уравнению, удовлетворяли бы и второму уравнению.
Это будет иметь место, если .
Если , то плоскости параллельны.
Угол , образованный двумя пересекающимися плоскостями, равен углу, образованному их нормальными векторами. Косинус угла между векторами определяется по формуле:
Если , то плоскости перпендикулярны.
Пример 21. Составить уравнение плоскости, которая проходит через две точки и перпендикулярно к плоскости .
Решение:
Запишем искомое уравнение в общем виде: . Так как плоскость должна проходить через точки и , то координаты точек должны удовлетворять уравнению плоскости. Подставляя координаты точек и , получаем: и .
Из условия перпендикулярности плоскостей имеем: . Вектор расположен в искомой плоскости и, следовательно, перпендикулярен нормальному вектору: .
Объединяя полученные уравнения, имеем:
Решив систему, получим: , , , .
Искомое уравнение имеет вид: .
Второй способ. Нормальный вектор заданной плоскости имеет координаты . Вектор . Нормальный вектор искомой плоскости перпендикулярен вектору и вектору , т.е. коллинеарен векторному произведению . Вычислим векторное произведение: .
Вектор . Запишем уравнение плоскости, проходящей через точку перпендикулярно вектору :
, или искомое уравнение.