Введение. Министерство образования и науки РФ

Министерство образования и науки РФ

Казанский национальный исследовательский технический университет

Им. А.Н.Туполева

Ильинкова Татьяна Александровна

«Металлографический анализ»

Учебное пособие

Для направления 150700.62 «Машиностроение»

Казань – 2014 г.

Министерство образования и науки РФ

Казанский национальный исследовательский технический университет

им. А.Н.Туполева

___________________________________________________________

Кафедра материаловедения, сварки и структурообразующих технологий

УДК 621.78:669.71(077)

Ильинкова Татьяна Александровна

«Металлографический анализ»

Учебное пособие

Для направления 150700.62 «Машиностроение»

Казань 2014

Автор-составитель: Ильинкова Т.А.,

Металлографический анализ/ Учебное пособие, Казан. нац. иссл техн. унт-т; Казань, 2014, 106 с.

Учебное пособие предназначено для студентов очного и заочного образования направления бакалавриата 150700.62 «Машиностроение»

Табл.4; Ил.25; Библ: 16

Содержание

Введение

Раздел 1. Атомно-кристаллическое строение металлов.Современная

классификация структур материалов ………..................................................13

Раздел 2. Основы оптической микроскопии……...……………………… 24

Раздел 3.Техника и средства подготовки сталей и сплавов

к исследованиям…………………………………………. ………………….16

Раздел 4. Исследование изломов……………………………………………. 40

Раздел 5. Стандартные методы исследования структур стали…………... 51

Раздел 6. Количественная металлография………………………………….

Раздел 7. Фрактальность дефектов структур материалов…….……………80

Введение

Металлография – это металлургическая дисциплина о структурах различных металлов и сплавов и закономерностях структурообразования. Металлография не охватывает всего разнообразия свойств металлов, эта наука, которая развивалась главным образом на базе производственного опыта и таких наук, как физическая химия и структурный анализ. Основоположниками металлографии являются инженеры П. П. Аносов (1799-1851) и Д. К. Чернов (1839-1921). Великий русский металлург Аносов на Златоустовском заводе впервые применил микроскоп для исследования структуры металлов. Он разработал теорию и технологию изготовления клинков из булатной стали. Исключительно велико значение работ Чернова, всемирно признанного отцом металлографии. В 1868г. Чернов впервые указал на превращения в твердой стали при определенных температурах, сопровождающиеся тепловыми эффектами. В работах по кристаллизации стали и строению слитка Чернов изложил основные идеи теории затвердевания, не утратившие научного и практического значения и в настоящее время. Таким образом, металлография, термодинамика и физическая химия, вместе взятые, представили собой стройное учение о фазовом равновесии металлических систем, составляющие значительную часть современной металлографии.

Раздел 1. Атомно-кристаллическое строение металлов

Металлы – один из классов конструкционных материалов, характеризующийся определенным набором свойств:

· «металлический блеск» (хорошая отражательная способность);

· пластичность;

· высокая теплопроводность;

· высокая электропроводность.

Данные свойства обусловлены особенностями строения металлов. Согласно теории металлического состояния, металл представляет собой вещество, состоящее из положительных ядер, вокруг которых по орбиталям вращаются электроны. На последнем уровне число электронов невелико и они слабо связаны с ядром. Эти электроны имеют возможность перемещаться по всему объему металла, т.е. принадлежать целой совокупности атомов.

Таким образом, пластичность, теплопроводность и электропроводность обеспечиваются наличием «электронного газа».

Все металлы, затвердевающие в нормальных условиях, представляют собой кристаллические вещества, то есть укладка атомов в них характеризуется определ¨нным порядком – периодичностью, как по различным направлениям, так и по различным плоскостям. Этот порядок определяется понятием кристаллическая решетка.

Другими словами, кристаллическая решетка это воображаемая пространственная решетка, в узлах которой располагаются частицы, образующие твердое тело.

Элементарная ячейка – элемент объема из минимального числа атомов, многократным переносом которого в пространстве можно построить весь кристалл.

Элементарная ячейка характеризует особенности строения кристалла. Основными параметрами кристалла являются:

· размеры ребер элементарной ячейки. a, b, c – периоды реш¨тки – расстояния между центрами ближайших атомов. В одном направлении выдерживаются строго определенными.

· углы между осями ().

· координационное число (К) указывает на число атомов, расположенных на ближайшем одинаковом расстоянии от любого атома в решетке.

· базис решетки количество атомов, приходящихся на одну элементарную ячейку решетки.

· плотность упаковки атомов в кристаллической решетке – объем, занятый атомами, которые условно рассматриваются как жесткие шары. Ее определяют как отношение объема, занятого атомами к объему ячейки (для объемно-центрированной кубической решетки – 0,68, для гранецентрированной кубической решетки – 0,74)

Рис.1.1. Схема кристаллической решетки

Классификация возможных видов кристаллических решеток была проведена французским ученым О. Браве, соответственно они получили название «решетки Браве». Всего для кристаллических тел существует четырнадцать видов решеток, разбитых на четыре типа;

· примитивный – узлы решетки совпадают с вершинами элементарных ячеек;

· базоцентрированный – атомы занимают вершины ячеек и два места в противоположных гранях;

· объемно-центрированный – атомы занимают вершины ячеек и ее центр;

· гранецентрированный – атомы занимают вершины ячейки и центры всех шести граней

Рис. 1.2. Основные типы кристаллических решеток: а – объемно-центрированная кубическая; б– гранецентрированная кубическая; в – гексагональная плотноупакованная

Основными типами кристаллических решеток для металлов являются:

1. Объемно - центрированная кубическая (ОЦК) (см. рис.1.2а), атомы располагаются в вершинах куба и в его центре (V, W, Ti, )

2. Гранецентрированная кубическая (ГЦК) (см. рис. 1.2б), атомы рассполагаются в вершинах куба и по центру куждой из 6 граней (Ag, Au, )

3. Гексагональная, в основании которой лежит шестиугольник:

o простая – атомы располагаются в вершинах ячейки и по центру 2 оснований (углерод в виде графита);

o плотноупакованная (ГПУ) – имеется 3 дополнительных атома в средней плоскости (цинк).

Понятие об изотропии и анизотропии. Свойства тела зависят от природы атомов, из которых оно состоит, и от силы взаимодействия между этими атомами. Силы взаимодействия между атомами в значительной степени определяются расстояниями между ними. В аморфных телах с хаотическим располохением атомов в пространстве расстояния между атомами в различных направлениях равны, следовательно, свойства будут одинаковые, то есть аморфные тела изотропны

В кристаллических телах атомы правильно располагаются в пространстве, причем по разным направлениям расстояния между атомами неодинаковы, что предопределяет существенные различия в силах взаимодействия между ними и, в конечном результате, разные свойства. Зависимость свойств от направления называется анизотропией

Чтобы понять явление анизотропии необходимо выделить кристаллографические плоскости и кристаллографические направления в кристалле.

Плоскость, проходящая через узлы кристаллической решетки, называется кристаллографической плоскостью.

Прямая, проходящая через узлы кристаллической решетки, называется кристаллографическим направлением.

Для обозначения кристаллографических плоскостей и направлений пользуются индексами Миллера. Чтобы установить индексы Миллера, элементарную ячейку вписывают в пространственную систему координат (оси X,Y, Z – кристаллографические оси). За единицу измерения принимается период решетки.

Рис.1.3. Примеры обозначения кристаллографических плоскостей (а) и кристаллографических направлений (б)

Для определения индексов кристаллографической кристаллографической плоскости необходимо:

· установить координаты точек пересечения плоскости с осями координат в единицах периода решетки;

· взять обратные значения этих величин;

· привести их к наименьшему целому кратному, каждому из полученных чисел.

Полученные значения простых целых чисел, не имеющие общего множителя, являются индексами Миллера для плоскости, указываются в круглых скобках. Примеры обозначения кристаллографических плоскостей на рис. 1.3 а.

Другими словами, индекс по оси показывает на сколько частей плоскость делит осевую единицу по данной оси. Плоскости,параллельные оси, имеют по ней индекс 0 (110)

Ориентация прямой определяется координатами двух точек. Для определения индексов кристаллографического направления необходимо:

· одну точку направления совместить с началом координат;

· установить координаты любой другой точки, лежащей на прямой, в единицах периода решетки

· привести отношение этих координат к отношению трех наименьших целыж чисел.

Индексы кристаллографических направлений указываются в квадратных скобкаж [111]

В кубической решетке индексы направления, перпендикулярного плоскости (hkl) имеют теже индексы [hkl].

Аллотропия или полиморфные превращения. Способность некоторых металлов существовать в различных кристаллических формах в зависимости от внешних условий (давление, температура) называется аллотропией или полиморфизмом. Каждый вид решетки представляет собой аллотропическое видоизменение или модификацию.

Примером аллотропического видоизменения в зависимости от температуры является железо (Fe).

Fe: – ОЦК - ;

– ГЦК - ;

– ОЦК - ; (высокотемпературное )

Превращение одной модификации в другую протекает при постоянной температуре и сопровождается тепловым эффектом. Видоизменения элемента обозначается буквами греческого алфавита в виде индекса у основного обозначения металла.

Примером аллотропического видоизменения, обусловленного изменением давления, является углерод: при низких давлениях образуется графит, а при высоких – алмаз.

Используя явление полиморфизма, можно упрочнять и разупрочнять сплавы при помощи термической обработки.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: