Общие сведения. Силовой расчет механизмов заключается в определении сил в кинематических парах, а также неизвестных внешних сил или моментов. Результаты силового расчета необходимы для проведения прочностного расчета деталей механизма и определения механического КПД; в последнем случае силовой расчет проводится обязательно с учетом трения в кинематических парах.
Исходные данные для силового расчета: размеры, массы и моменты инерции звеньев, закон движения начального звена, одна из внешних сил (моментов), заданная графиком для всего цикла работы.
Силы взаимодействия звеньев будем обозначать буквой Q с двойным индексом. Первая цифра индекса показывает звено, со стороны которого действует сила; вторая цифра - звено, к которому приложена сила, например,
- это сила, с которой звено 1 действует на звено 2.
Силовой расчет механизма будем производить методом с применением принципа Даламбера. При решении задачи к каждому звену, помимо заданных внешних сил и моментов, силы тяжести, искомых сил в кинематических парах, прикладываются главный вектор сил инерции
и главный момент сил инерции
. В результате вся система сил и моментов условно рассматривается в равновесии, и задачу динамики можно теперь решать методами статики.
Рассмотрение каждого, отдельно взятого звена с приложенными к нему силами и моментами не дает решения поставленной задачи, поскольку неизвестных больше, чем уравнений. Поэтому заданный плоский рычажный механизм расчленяется на первичный механизм и структурные, статически определимые группы Ассура, для которых число неизвестных равно числу уравнения.
Расчет начинают с той структурной группы, к звеньям которой приложены известные внешние силы и моменты, а заканчивают первичным механизмом.
Определение сил в кинематических парах структурной группы с вращательными парами (рис. 32). Заданы внешние силы моменты (например,
,
), массы звеньев
в кг, моменты инерции звеньев
,
в
относительно осей, проходящих через центры масс. Из плана ускорений определяем линейные ускорения
в м/с2 центров масс, угловые ускорения звеньев
, в рад/с и вычисляем главные векторы сил инерции звеньев
,
в Н и главные моменты сил
,
в 

Силы во внешних шарнирах A и C разложим на составляющие, направленные по звену
,
и перпендикулярно к звену находим
,
(рис. 32а). Составляйте сил
и
находим из уравнений моментов сил относительно точки B для каждого звена в отдельности. Для звена 2
(63)
где сила тяжести
Н; ускорение g =9,81 м/с2.
Следует помнить, что в это уравнение числовые значения моментов подставляются со своими знаками.
Отсюда находим величину и направление
, а затем

Аналогично для звена 3
(64)
откуда находим
и 
Составляющие сил
и
определим из векторного уравнения сил для структурной группы, состоящей из звеньев 2 и 3:
(65)
В этом и последующих уравнениях одной чертой подчеркнуты векторы, известные только по направлению, двумя чертами - известные по величине и направлению. Составляющие сил (для нашего примера
и
,
и
) рекомендуется записывать рядом, чтобы впоследствии легко получить их векторную сумму (
и
).
Уравнение (65) решим графически, строя план сил в некотором масштабе
(рис. 32в). Для этого сначала строим cyмму всех известных по величине и направлению векторов, а затем находим неизвестные по величине векторы сил
и
.
Для определения силы в шарнире B решим графически векторное уравнение сил, приложенных к одному из звеньев, например, к звену 3 (рис. 32б)
(66)
Решение этого уравнения сводится к определению отрезка (ab), изображающего вектор
(рис. 32в). Сила
.
Определение сил в кинематических парах структурной группы с двумя вращательными и одной поступательной парами (рис.33).

Заданы: внешняя сила
в Н, массы звеньев
в кг и момент инерции
в
. Вычислены главные векторы сил инерции
,
и главный момент сил инерции
в
;
, так как звено 3 движется поступательно. Для этой структурной группы, по сравнению с предыдущей, решение упрощается вследствие того, что сила
известна по направлению. Силу в шарнире А разложим на составляющие
и 
Из уравнения моментов сил, приложенных к звену 2, относительно точки В
(67)
находим
и силу
.
Составляем векторное уравнение сил, приложенных к звеньям 2, 3 структурной группы
(68)
Решая это уравнение графическим способом, находим неизвестные величины векторов
и
. Плечо
найденной силы
(рис. 33б) получим из уравнения моментов сил, приложенных к звену 3, относительно точки B
(69)
Определим момент
, а затем
м.
Силу
находим из векторного уравнения сил, приложенных к звену 3,
(70)






