Совершенная дизъюнктивная и конъюнктивная нормальные формы

Воспользовавшись теоремой 4.1 при , получаем представление

,

которое для может быть преобразовано к виду

, (4.25)

где дизъюнкция берется по всем наборам , на которых .

Разложение функции по всем переменным (4.25) называют предельным разложением или совершенной дизъюнктивной нормальной формой (СДНФ) функции . СДНФ функции содержит ровно столько конъюнкций, сколько единиц в таблице функции , каждому единичному набору соответствует конъюнкция всех переменных, в которых взято с отрицанием, если , и без отрицания, если . Например, набору соответствует конъюнкция = = . Такую конъюнкцию еще называют конституентой единицы. Другими словами, СДНФ – это дизъюнкция конституент единицы, соответствующих единичным наборам функции.

Таким образом, существует взаимно однозначное соответствие между таблицей функции и ее СДНФ, и, следовательно, СДНФ для всякой логической функции единственна (точнее, единственна с точностью до порядка букв и конъюнкций: это означает, что ввиду коммутативности дизъюнкции и конъюнкции, формулы, полученные из (4.25) перестановкой конъюнкций и букв в конъюнкции, не различаются и считаются одной и той же СДНФ). Например, функции, заданные табл. 4.7, имеют СДНФ:

,

,

.

Единственная функция, не имеющая СДНФ – это константа 0.

Таблица 4.7

0 0      
0 1      
1 0      
1 1      

Теорема 4.2. Всякая логическая функция может быть представлена булевой формулой, то есть, как суперпозиция дизъюнкции, конъюнкции и отрицания.

Доказательство: Как было сказано выше, всякую логическую функцию, кроме константы 0, можно представить СДНФ, которая является булевой формулой. Константу 0 можно представить в виде булевой формулы . Таким образом, любую логическую функцию можно представить булевой формулой. Теорема доказана.

Так как СДНФ для логической функции единственна, то иногда, для установления эквивалентности формул удобно формулы привести с СДНФ и произвести их сравнение.

Пример 4.6. Эквивалентны ли формулы и ?

Формула является СДНФ, так как представляет собой дизъюнкцию двух конституент единицы. По определению эквивалентности ( в табл. 4.6) получим ее представление в СДНФ: . Используя представление эквивалентности в СДНФ и соотношения булевой алгебры, преобразуем в СДНФ :

,

т. е. формулы и эквивалентны.

Используя принцип двойственности, выпишем двойственное предельное разложение:

,

которое называется совершенной конъюнктивной нормальной формой (СКНФ) функции . СКНФ функции содержит ровно столько дизъюнкций, сколько нулей в таблице функции , каждому нулевому набору соответствует дизъюнкция всех переменных, в которых взято без отрицания, если , и с отрицанием, если . Например, набору соответствует дизъюнкция = = . Для такой дизъюнкции еще употребляется название конституента нуля. То есть СКНФ представляется как конъюнкция конституент нуля, соответствующих нулевым наборам функции. Следовательно, между таблицей и СКНФ также существует взаимно однозначное соответствие. Например, функции, заданные табл.4.7, имеют СКНФ:

,

,

.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: