Ряд сходится, если
.
Если предел больше 1, то ряд расходится. Если предел равен 1, то ряд может быть как сходящимся, так и расходящимся. Признак Даламбера целесообразно применить, когда общий член ряда содержит выражение вида n! или
.
@ Задача 3. Исследовать на сходимость ряд
.
Решение: По признаку Даламбера
, т.е. ряд сходится.
Признак Коши
Ряд сходится, если
.
Если предел больше 1, то ряд расходится. Если предел равен 1, то ряд может быть как сходящимся, так и расходящимся. Признак Коши целесообразно применить, когда общий член ряда содержит выражение вида
.
@ Задача 4. Исследовать на сходимость ряд
.
Решение: По признаку Коши
, т.е. ряд сходится.






