Решение обратной задачи – отыскание закона распределения системы по законам распределения, входящих в систему случайных величин, в общем случае невозможно.
В частном случае, когда случайные величины независимы, задача решается достаточно просто.
О.1. Две случайные величины
и
называются независимыми, если независимы все связанные с ними события:
и
,
и
, и т.д.
Кроме того, две случайные величины называются независимыми, если закон распределения каждой из них не зависит от того, какое значение приняла другая величина.
Т.1. Для того, чтобы СВ Х и Y, входящие в двумерную СВ
, были независимы, необходимо и достаточно, чтобы функция распределения системы
была равна произведению функций распределения ее составляющих:
.
Т.2. Для того, чтобы ДСВ Х и Y, входящие в двумерную СВ
, были независимы, необходимо и достаточно, чтобы выполнялось равенство:

Для зависимых случайных величин вводится понятие об условном законе распределения.
О.2. Условным законом распределения (условным распределением) СВ
, входящей в систему
, называется ее закон распределения, вычисленный при условии, что другая случайная величина приняла определенное значение.
Для дискретной двумерной СВ
условие распределения составляющей Х при условии, что
, имеет вид:
.