Классификация нуклеиновых кислот

В зависимости от того, какой углевод входит в состав нуклеотида, различают два типа нуклеиновых кислот:

1. Дезоксирибонуклеиновая кислота (ДНК) содержит дезоксирибозу. Макромолекула ДНК состоит из 25-30 тысяч и более нуклеотидов. В состав нуклеотида ДНК входят: дезоксирибоза, остатки фосфорной кислоты (H3PO4), одно из четырех азотистых оснований (аденин, гуанин, цитозин, тимин).

2. Рибонуклеиновая кислота (РНК) содержит рибозу. Макромолекула РНК состоит из 5-6 тысяч нуклеотидов. В состав нуклеотида РНК входят: рибоза, остатки фосфорной кислоты, одно из четырех азотистых оснований (аденин, гуанин, цитозин, урацил).

Мономер ДНК и РНК состоит из четырех типов нуклеотидов, которые друг от друга отличаются только азотистым основанием. Нуклеотиды связаны в полимерной цепи. Основную полимерную цепь образуют углевод и фосфорная кислота. Пуриновые и пиримидиновые основания не входят в полимерную цепь. Причем мононуклеотиды связаны друг с другом с помощью диэфирных мостиков: между OH- углевода в положении С3 одного нуклеотида и OH- углевода в положении С5 соседнего нуклеотида.

Для нуклеиновых кислот характерна первичная и вторичная структура. Биологическую функцию нуклеиновых кислот в организме определяет первичная структура, т. е. последовательность чередования входящих в них четырех типов нуклеотидов.

Вторичную структуру нуклеиновых кислот рассмотрим на примере ДНК. Макромолекулы ДНК представляют собой двойную спираль, состоящую из двух полинуклеотидных цепей. Остатки фосфорной кислоты и дезоксирибозы каждой полинуклеотидной цепи расположены на поверхности внешней части спирали, а азотистые соединения внутри. Азотистые основания двух цепей связаны водородными связями и они поддерживают вторичную структуру. Водородная связь образуется между аденином и тимином, между гуанином и цитозином.

Биологическая роль нуклеиновых кислот. Они осуществляют хранение и передачу наследственной информации, а также определяют синтез нужных белков в клетке и его регуляцию. Так ДНК из ядра клетки посылает своих исполнителей РНК, снабдив их необходимой информацией в цитоплазму — место синтеза белков.

АТФ (аденозинтрифосфат) — это нуклеотид, состоящий из углевода (рибозы), трех молекул фосфорной кислоты и аденина. При гидролизе химической связи между второй и третьей фосфатными группами АТФ освобождается запас энергии. При этом выделяется энергия и АТФ превращается в аденозиндифосфат (АДФ).

Если в клетке необходимо создать запас энергии, то протекает обратный процесс присоединения фосфатной группы и превращения АДФ в АТФ. Таким образом АТФ способен хранить запас энергии и освобождать ее. Поэтому АТФ широко применяется в медицине как лекарственный препарат, стимулирующий обменные процессы в миокарде, способствующий лучшему усвоению кислорода.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: