ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО
ТРАНСПОРТА
ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ ВОДНЫХ КОММУНИКАЦИЙ»
М.Ю. Ястребов
МАТЕМАТИКА
Санкт-Петербург
УДК
ББК
Рецензенты: к. ф.-м.н., доцент
Кузнецов В.О.,
К. ф.-м.н., доцент
Гулевич Н.М.
Ястребов М.Ю.
Дифференциальные уравнения: учебное пособие.-СПб:СПГУВК, 2011 - 34 с.
Предназначено для студентов технических и информационных специальностей.
Содержание соответствует рабочей программе дисциплины «Математика».
Печатается по решению редакционно-издательского совета Санкт-Петербургского государственного университета водных коммуникаций.
УДК
ББК
©Санкт-Петербургский государственный
Университет водных коммуникаций, 2012
ИСХОДНЫЕ ПОНЯТИЯ
Определение. Обыкновенным дифференциальным уравнением называется уравнение вида
, (1)
связывающее независимую переменную
, неизвестную функцию
и ее производные различных порядков.
Функция
предполагается заданной на некотором промежутке (который также, как правило, не задан изначально и подлежит определению вместе с
).
Замечание. В отличие от дифференциальных уравнений вида (1), в которых искомая функция зависит только от одной переменной, уравнения, связывающие неизвестную функцию нескольких независимых переменных и ее частные производные различных порядков, называются уравнениями в частных производных, или уравнениями математической физики.
Например, уравнение теплопроводности описывает изменение температуры тела
в каждой его точке
в зависимости от времени
:
.
В дальнейшем, говоря о дифференциальных уравнениях, мы будем иметь ввиду обыкновенные дифференциальные уравнения.
Определение. Порядком дифференциального уравнения называется порядок старшей производной, входящей в уравнение.
Таким образом уравнение (1) задает дифференциальное уравнение
-го порядка.
Напомним, что под промежутком
понимается любой из возможных промежутков, содержащий или не содержащий граничные точки:
.
Определение. Решением дифференциального уравнения (1) на промежутке
называется функция
, дифференцируемая
раз и обращающая его на
в тождество (то есть в равенство, верное при всех
).






