Формирование рисунка схемы

Нанесение рисунка схемы или за­щитного рельефа требуемой конфигу­рации необходимо при осуществлении процессов металлизации и травления. Рисунок должен иметь четкие грани­цы с точным воспроизведением тон­ких линий, быть стойким к травиль­ным растворам, не загрязнять платы и электролиты, легко сниматься после выполнения своих функций. Перенос рисунка печатного монтажа на фольгированный диэлектрик осуществляют методами сеткографии, офсетной пе­чати и фотопечати. Выбор метода за­висит от конструкции платы, требуе­мой точности и плотности монтажа, серийности производства.

Сеткографический метод нанесения рисунка схемы наиболее рентабелен для массового и крупносерийного производства плат при минимальной ширине проводников и расстоянии между ними > 0,5 мм, точность вос­произведения изображения ±0,1 мм. Суть заключается в нанесении на пла­ту специальной кислотостойкой крас­ки путем продавливания ее резиновой лопаткой (ракелем) через сетчатый трафарет, в котором необходимый ри­сунок образован открытыми ячейками сетки (рис. 2.4).

Для изготовления трафарета ис­пользуют металлические сетки из не­ржавеющей стали с толщиной прово­локи 30–50 мкм и частотой плетения 60–160 нитей на 1 см, металлизиро­ванного нейлонового волокна, имею­щего лучшую эластичность, с толщи­ной нити 40 мкм и частотой плетения до 200 нитей на 1 см, а также из по­лиэфирных волокон и капрона

Од­ним из недостатков сеток является их растяжение при многократном использовании. Самой большой стойкостью обладают сетки из нержавеющей стали (до 20 тыс. отпечатков), метал­лизированных пластмасс (12 тыс.), по­лиэфирных волокон (до 10 тыс.), ка­прона (5 тыс.).

Рис. 2.4. Принцип трафаретной печати.

1 – ракель; 2 – трафарет; 3 – краска; 4 – основание.

Изображение на сетке получают с помощью экспонирования жидкого или сухого (пленочного) фоторезиста, после проявления которого образуют­ся открытые (свободные от рисунка) ячейки сетки. Трафарет в сеткографи­ческой раме устанавливают с зазором 0,5–2 мм от поверхности платы так, чтобы контакт сетки с поверхностью платы был только в зоне нажатия на сетку ракелем. Ракель представляет собой прямоугольную заточенную по­лосу резины, установленную по отно­шению к подложке под углом 60–70°.

Для получения рисунка ПП исполь­зуют термоотверждающиеся краски СТ 3.5;

СТ 3.12, которые сушат либо в термошкафу при температуре 60°С в течение 40 мин, либо на воздухе в те­чение 6 ч, что удлиняет процесс сеткографии. Более технологичными яв­ляются фотополимерные композиции ЭП-918 и ФКП-ТЗ с ультрафиолетовым отверждением в течение 10–15с, что является решающим фактором при автоматиза­ции процесса. При однократном на­несении покрытие зеленого цвета имеет толщину 15–25 мкм, воспроиз­водит рисунок с шириной линий и за­зорами до 0,25 мм, выдерживает погружение в расплав припоя ПОС-61 при температуре 260°С до 10 с, воз­действие спиртобензиновой смеси до 5 мин и термоциклирование в интер­вале температур от – 60 до +120 °С. После нанесения рисунка плату про­сушивают при температуре 60 °С в те­чение 5–8 мин, контролируют качест­во и при необходимости подвергают ретуши. Удаление защитной маски после травления или металлизации осуществляют химическим методом в 5 %-м растворе едкого натра в течение 10–20 с.

Табл. 2.2. Оборудование для трафаретной печати.

Тип оборудования Марка Формат печати Производительность оттисков/час
Автомат шелкографический Полуавтомат трафаретной печати Трафаретная печатная машина Полуавтомат Полуавтомат Автоматическая линия Автомат АШ-2 (СССР) ПТП-3 (СССР) ПТ-2 (СССР) Minimatik (Швеция) Beltron (Германия) Chemcut (США) Resso (Италия) Astrjmat (Италия) 380 ×220 400 ×300 430× 200 300 ×500 500× 700 500× 700 510× 760 650× 650  

Для трафаретной печати использу­ют полуавтоматическое и автоматиче­ское оборудование, отличающееся фор­матом печати и производительностью (табл. 2.2). Автоматические линии тра­фаретной печати фирм Chemcut (США), Resco (Италия) имеют авто­матические системы подачи и уста­новки плат, движения ракеля и пода­чи резиста. Для сушки резиста приме­няют ИК-печитуннельного типа.

Офсетная печать применяется для крупносерийного производства ПП при малой номенклатуре схем. Разре­шающая способность 0,5–1 мм, точ­ность получаемого изображения со­ставляет ±0,2 мм. Суть метода в том, что в клише, несущее изображение схемы (печатные проводники, кон­тактные площадки), закатывается краска. Затем она снимается офсетным валиком, покрытым резиной, пе­реносится, на изоляционное основание и подвергается сушке. Клише и осно­вание платы располагаются друг за другом на основании машины для оф­сетной печати (рис. 2.5)

Рис.2.5. Схема офсетной печати.

1 – офсетный валик; 2 – клише; 3 – плата;

4 – валик для нанесения краски; 5 – прижимной валик.

Точность печати и резкость конту­ров определяются параллельностью валика и основания, типом и конси­стенцией краски. С помощью одного клише можно выполнить неограни­ченное число оттисков. Производи­тельность метода ограничена длитель­ностью колебательного цикла (нанесе­ние краски – перенос) и не превыша­ет 200–300 оттисков в час. Недостат­ки метода: длительность процесса изготовления клише, сложность измене­ния рисунка схемы, трудность получе­ния беспористых слоев, высокая стои­мость оборудования.

Фотографический метод нанесения рисунка позволяет получать минималь­ную ширину проводников и расстоя­ния между ними 0,1–0,15 мм с точ­ностью воспроизведения до 0,01 мм. С экономической точки зрения этот способ менее рентабельный, но по­зволяет получать максимальную раз­решающую способность рисунка и по­этому применяется в мелкосерийном и серийном производстве при изго­товлении плат высокой плотности и точности. Способ основан на исполь­зовании светочувствительных компози­ций, называемых фоторезистами,ко­торые должны обладать: высокой чув­ствительностью; высокой разрешаю­щей способностью; однородным по всей поверхности беспористым слоем с высокой адгезией к материалу пла­ты; устойчивостью к химическим воз­действиям; простотой приготовления, надежностью и безопасностью приме­нения.

Фоторезисты разделяются на нега­тивные и позитивные. Негативные фоторезисты под действием излучения образуют защитные участки рельефа в результате фотополимеризации и задубливания. Освещенные участки пе­рестают растворяться и остаются на поверхности подложки. Позитивные фо­торезисты передают рисунок фото­шаблона без изменений. При световой обработке экспонированные участки разрушаются и вымываются.

Для получения рисунка схемы при использовании негативного фоторезиста экспонирование производят через негатив, позитивного – через пози­тив. Позитивные фоторезисты имеют более высокую разрешающую способ­ность, что объясняется различиями в поглощении излучения фоточувстви­тельным слоем. На разрешающую спо­собность слоя влияют дифракционное огибание света на краю непрозрачно­го элемента шаблона и отражение све­та от подложки (рис. 2.6, а).

Рис.2.6. Экспонирование светочувствительного слоя:

а – экспонирование; б – негативный фоторезист; в – позитивный фоторезист;

1 –дифракция; 2 –рассеяние; 3 –отражение; 4 –шаблон; 5 – резист; 6 – подложка.

В негативном фоторезисте дифрак­ция не играет заметной роли, по­скольку шаблон плотно прижат к резисту, но в результате отражения во­круг защитных участков появляется ореол, который снижает разрешаю­щую способность (рис. 2.6, б). В слое позитивного резиста под влиянием дифракции разрушится и вымоется при проявлении только верхняя об­ласть резиста под непрозрачными уча­стками фотошаблона, что мало ска­жется на защитных свойствах слоя. Свет, отраженный от подложки, может вызвать некоторое разрушение прилегающей к ней области, но про­явитель эту область не вымывает, так как под действием адгезионных сил слой опустится вниз, вновь образуя четкий край изображения без ореола (рис. 2.6, в).

В настоящее время в промышлен­ности используются жидкие и сухие (пленочные) фоторезисты. Жидкие фоторезисты – коллоидные растворы синтетических полимеров, в частности поливинилового спирта (ПВС). Наличие гидроксильной груп­пы ОН в каждом звене цепи опреде­ляет высокую гигроскопичность и по­лярность поливинилового спирта. При добавлении к водному раствору ПВС бихромата аммония происходит «очув­ствление» последнего. Фоторезист на основе ПВС наносят на предваритель­но подготовленную поверхность пла­ты путем окунания заготовки, поли­вом с последующим центрифугирова­нием. Затем слои фоторезиста сушат в термошкафу с циркуляцией воздуха при температуре 40°С в течение 30–40 мин. После экспонирования осу­ществляется проявление фоторезиста в теплой воде. Для повышения хими­ческой стойкости фоторезиста на ос­нове ПВС применяют химическое дубление рисунка ПП в растворе хромового ангидрида, а затем термиче­ское дубление при температуре 120°С в течение 45–50 мин. Раздубливание (снятие) фоторезиста проводят в тече­ние 3–6 с в растворе следующего состава:

– 200–250 г/л щавелевой кисло­ты,

– 50–80 г/л хлористого натрия,

– до 1000 мл воды при температуре 20 °С.

Достоинства фоторезиста на основе ПВС – низкие токсичность и пожароопасность, проявление с помощью воды. К недостаткам его относят эф­фект темнового дубления (поэтому срок хранения заготовок с нанесен­ным фоторезистом не должен превы­шать 3–6 ч), низкую кислото- и щелочеустойчивость, трудность автома­тизации процесса получения рисунка, трудоемкость приготовления фоторезиста, низкую чувствительность.

Улучшение свойств жидких фоторе­зистов (устранение дубления, повы­шение кислотостойкости) достигается в фоторезисте на основе циннамата. Светочувствительным компонентом фо­торезиста этого типа является поливинилциннамат (ПВЦ) – продукт взаи­модействия поливинилового спирта и хлорангидрида коричной кислоты. Разрешающая способность его при­мерно 500 лин/мм, проявление осуще­ствляется в органических растворите­лях – трихлорэтане, толуоле, хлор­бензоле. Для интенсификации про­цесса проявления и удаления фоторе­зиста ПВЦ используют ультразвуко­вые колебания. Диффузия в УЗ-поле сильно ускоряется за счет акустиче­ских микропотоков, а образующиеся кавитационные пузырьки при захло­пывании отрывают участки фоторези­ста от платы. Время проявления со­кращается до 10 с, т. е. в 5–8 раз по сравнению с обычной технологией. К недостаткам фоторезиста ПВЦ от­носятся его высокая стоимость, ис­пользование токсичных органических растворителей. Поэтому резисты ПВЦ не нашли широкого применения в изготовлении ПП, а используются глав­ным образом при изготовлении ИМС.

Фоторезисты на основе диазосоединений применяют в основном как по­зитивные. Светочувствительность диазосоединений обусловлена наличием в них групп, состоящих из двух атомов азота N2 (рис. 2.7).

Рис.2.7. Молекулярные связи в структуре диазосоединений.

Сушка слоя фото­резиста проводится в две стадии:

– при температуре 20°С в течение 15–20 мин для испарения легколетучих компо­нентов;

– в термостате с циркуляцией воздуха при температуре 80 °С в те­чение 30–40 мин.

Проявителями яв­ляются растворы тринатрийфосфата, соды, слабых щелочей. Фоторезисты ФП-383, ФН-11 на основе диазосоединений имеют разрешающую способ­ность 350–400 лин/мм, высокую хи­мическую стойкость, однако стои­мость их высока.

Сухие пленочные фоторезисты марки Riston впервые разработаны в 1968 г. фирмой Du Pont (США) и имеют тол­щину 18 мкм (красный цвет), 45 мкм (голубой) и 72 мкм (рубиновый). Су­хой пленочный фоторезист марки СПФ-2 выпускается с 1975 г. толщи­ной 20, 40 и 60 мкм и представляет собой полимер на основе полиметилметакрилата 2 (рис.2.8), расположен­ный между полиэтиленовой 3 и лавса­новой / пленками толщиной 25 мкм каждая.

Рис.2.8. Структура сухого фоторезиста.

В СНГ выпускаются следующие типы сухих пленочных фоторезистов:

– проявляемые в органических веще­ствах – СПФ-2, СПФ-АС-1, СРФ-П;

– водно-щелочные – СПФ-ВЩ2, ТФПК;

– повышенной надежности – СПФ-ПНЩ;

– защитные – СПФ-З-ВЩ.

Перед накаткой на поверхность ос­нования ПП защитная пленка из по­лиэтилена удаляется и сухой фоторе­зист наносится на плату валиковым методом (плакирование, ламинирова­ние) при нагреве до 100°С со скоро­стью до 1 м/мин с помощью специ­ального устройства, называемого ла­минатором. Сухой резист полимеризуется под действием ультрафиолетового излучения, максимум его спектраль­ной чувствительности находится в об­ласти 350 нм, поэтому для экспониро­вания используют ртутные лампы. Проявление осуществляется в маши­нах струйного типа в растворах метилхлорида, диметилформамида.

СПФ-2 – сухой пленочный фоторе­зист, аналогичный по свойствам фото­резисту Riston, допускает обработку как в кислых, так и в щелочных сре­дах и используется при всех методах изготовления ДПП. При его примене­нии необходима герметизация обору­дования для проявления. СПФ-ВЩ обладает более высокой разрешающей способностью (100–150 линий/мм), стоек в кислой среде, обрабатывается в щелочных растворах. В состав фото­резиста ТФПК (в полимеризующую композицию) входит метакриловая ки­слота, улучшающая эксплуатационные характеристики. Для него не требуется термообработка защитного рельефа перед нанесением гальванопокрытия. СПФ-АС-1 позволяет получать рису­нок ПП как по субтрактивной, так и по аддитивной технологии, поскольку он стоек и в кислых, и в щелочных средах. Для улучшения адгезии свето­чувствительного слоя к медной под­ложке в состав композиции введен бензотриазол.

Применение сухого фоторезиста зна­чительно упрощает процесс изготовле­ния ПП, увеличивает процент выхода годных изделий с 60 до 90 %. При этом:

– исключаются операции сушки, дубления и ретуширования, а также за­грязнения, нестабильность слоев;

– обес­печивается защита металлизированных отверстий от затекания фоторезиста;

– достигается высокая автоматизация и механизация процесса изготовления ПП и контроля изображения.

Установка для нанесения сухого пленочного фоторезиста – ламинатор (рис.2.9) состоит из валиков 2, по­дающих плату 6 и прижимающих фо­торезист к поверхности заготовок, ва­ликов 3 и 4 для снятия защитной по­лиэтиленовой пленки, бобины с фоторезистом 5, нагревателя 1 с терморегу­лятором.

Рис.2.9. Схема ламинатора.

Скорость движения заготов­ки платы достигает 0,1 м/с, температу­ра нагревателя (105 ±5) °С. Конструкция установки АРСМ 3.289.006 НПО «Ратон» (Беларусь) обеспечивает постоянное усилие прижатия независи­мо от зазора, устанавливаемого между валиками-нагревателями. Максималь­ная ширина заготовки ПП 560 мм. Особенностью накатывания является опасность попадания пыли под слой фоторезиста, поэтому установка долж­на работать в гермозоне. Накатанная пленка фоторезиста выдерживается не менее 30 мин перед экспонированием для завершения усадочных процессов, которые могут вызвать искажение ри­сунка и уменьшить адгезию.

Проявление рисунка осуществляет­ся в результате химического и механи­ческого воздействия метилхлороформа. За оптимальное время проявления принимается время, в 1,5 раза боль­шее, чем необходимо для полного удаления незадубленного СПФ. Каче­ство операции проявления зависит от пяти факторов: времени проявления, температуры проявления, давления проявителя в камере, загрязнения про­яви геля, степени окончательной про­мывки. По мере накопления в прояви­теле растворенного фоторезиста ско­рость проявления замедляется. После проявления плату необходимо отмыть водой до полного удаления остатков растворителя. Продолжительность опе­рации проявления СПФ-2 при темпе­ратуре проявителя 14–18°С, давлении раствора в камерах 0,15МПа и скоро­сти движения конвейера 2,2 м/мин со­ставляет 40–42 с.

Удаление и проявление фоторезиста осуществляется в машинах струйного типа (ГГМЗ.254.001, АРСМЗ.249.000) в хлористом метилене. Это сильный растворитель, поэтому операция сня­тия фоторезиста должна выполняться быстро (за 20–30 с). В установках пре­дусматривается замкнутый цикл ис­пользования растворителей, после оро­шения плат растворители поступают в дистиллятор, а затем чистые раствори­тели переключаются на повторное ис­пользование.

Экспонирование фоторезиста пред­назначено для инициирования в нем фотохимических реакций и проводит­ся в установках, имеющих источники света (сканирующие или неподвиж­ные) и работающие в ультрафиолето­вой области. Для плотного прилега­ния фотошаблонов к заготовкам плат используют рамы, где создается раз­режение. Установка экспонирования СКЦИ.442152.0001 НПО «Ратон» при рабочем поле загрузочных рам 600×600 мм обеспечивает производитель­ность 15 плат/ч. Время экспозиции ртутной лампой ДРШ-1000 1–5 мин. После экспонирования для заверше­ния темновой фотохимической реак­ции необходима выдержка при ком­натной температуре в течение 30 мин перед удалением лавсановой защит­ной пленки.

Недостатки сухого фоторезиста – не­обходимость приложения механическо­го усилия при накатке, что недопусти­мо для ситалловых подложек, пробле­ма утилизации твердых и жидких от­ходов. На каждые 1000 м2 материала образуется до 40 кг твердых и 21 кг жидких отходов, утилизация которых является экологической проблемой.

Для получения проводящего рисун­ка на изоляционном основании как сеткографическим, так и фотохимиче­ским способом необходимо применять фотошаблоны, представляющие собой графическое изображение рисунка в масштабе 1:1 на фотопластинках или фотопленке. Фотошаблоны выполня­ют в позитивном изображении при наращивании проводящих участков на лентах и в негативном изображении, когда проводящие участки получают травлением меди с пробельных мест.

Геометрическая точность и качество рисунка ПП обеспечиваются в первую очередь точностью и качеством фото­шаблона, который должен иметь:

– контрастное черно-белое изображе­ние элементов с четкими и ровными границами при оптической плотности черных полей не менее 2,5 ед., прозрачных участков не более 0,2 ед., измеренной на денситомере типа ДФЭ-10;

– минимальные дефекты изображения (темные точки на пробельных местах, прозрачные точки на черных полях), которые не превышают 10–30 мкм;

– точность элементов выполнения рисунка ±0,025 мм.

В большей степени перечисленным требованиям удовлетворяют сверхкон­трастные фотопластинки и пленки «Микрат-Н» (СССР), фотопластинки типа ФТ-41П (СССР), РТ-100 (Япо­ния) и Agfalit (Германия).

В настоящее время применяются два основных способа получения фо­тошаблонов: фотографирование их с фотооригиналов и вычерчивание све­товым лучом на фотопленке с помо­щью координатографов с программ­ным управлением либо лазерным лу­чом. При изготовлении фотооригина­лов рисунок ПП выполняют в увели­ченном масштабе (10:1, 4:1, 2:1) на малоусадочном материале путем вы­черчивания, изготовления аппликаций или резания по эмали. Способ аппли­кации предусматривает наклеивание заранее подготовленных стандартных элементов на прозрачную основу (лав­сан, стекло и др.). Первый способ ха­рактеризуется низкой точностью и большой трудоемкостью, поэтому используется в основном для макетных образцов плат.

Резание по эмали применяют для ПП с высокой плотностью монтажа. Для этого полированное листовое стекло покрывают непрозрачным сло­ем эмали, а вырезание рисунка схемы осуществляют на координатографе с ручным управлением. Точность полу­чения рисунка 0,03–0,05 мм.

Изготовленный фотооригинал фо­тографируют с необходимым умень­шением на высококонтрастную фотопластину с помощью фоторепродук­ционных полиграфических камер типа ПП-12, ЭМ-513, Klimsch (Германия) и получают фотошаблоны, которые могут быть контрольными и рабочи­ми. Для тиражирования и изготовле­ния рабочих, одиночных, а также групповых фотошаблонов применяют метод контактной печати с негатив­ной копии контрольного фотошабло­на. Операция выполняется на мульти­пликаторе модели АРСМ 3.843.000 с точностью ±0,02 мм.

Недостатки такого метода – боль­шая трудоемкость получения фото­оригинала, требующего высококвали­фицированного труда, и трудность равномерного освещения фотоориги­налов значительной площади, что снижает качество фотошаблонов.

Возрастающая сложность и плот­ность рисунка ПП, необходимость увеличения производительности труда привели к разработке метода изготов­ления фотошаблонов сканирующим лучом непосредственно на фотоплен­ке. Для изготовления фотошаблона световым лучом разработаны коорди­натографы с программным управлени­ем. С переходом на машинное проек­тирование плат необходимость вычер­чивания чертежа отпадает, так как по­лученная с ЭВМ перфолента с коор­динатами проводников вводится в считывающее устройство координато­графа, на котором автоматически вы­полняется фотошаблон.

Координатограф (рис. 2.10) состоит из вакуумного стола 8, на котором за­крепляют фотопленку, фотоголовки и блока управления /. Стол перемеща­ется с высокой точностью в двух вза­имно перпендикулярных направлени­ях с помощью прецизионных ходовых винтов 9 и 3, которые приводятся во вращение шаговыми двигателями 2 и 10. Фотоголовка включает осветитель 4, фокусирующую систему 5, круговую диафрагму 6 и фотозатвор 7. Диа­фрагма имеет набор отверстий (25– 70), оформляющих определенный эле­мент рисунка ПП, и закрепляется на валу шагового двигателя. В соответст­вии с программой работы сигналы от блока управления подаются на шаго­вые двигатели привода стола, диа­фрагмы и на осветитель. Современные координатографы (табл. 5.4) снабжа­ются системами автоматического под­держания постоянного светового ре­жима, вывода из ЭВМ информации о фотошаблонах на пленку в масштабах 1:2; 1:1; 2:1; 4:1.

Рис. 5.10. Схема координатографа.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: