Технология многослойных печатных плат

Развитие современной радиоэлектро­ники характеризуется широким при­менением микросхем различной слож­ности (ИМС, БИС и СБИС) в качест­ве основных компонентов ЭА. Слож­ность и большая функциональная плотность современной аппаратуры потребовали огромного числа комму­тационных соединений, которые воз­можно осуществить, только используя многослойный печатный монтаж.

С 60-х гг. для всей электроники ха­рактерно обращение к цифровой об­работке сигналов. Как следствие про­гресса в этой области постоянно рас­тет скорость обработки электрических сигналов в единицу времени и плот­ность компоновки элементов в еди­нице объема. Это предъявляет в каче­стве основных требований к системе

монтажа максимальные помехозащи­щенность и плотность проводников.

Проблема помехозащищенности дав­но являлась наиболее важной в техни­ке передачи информации. Собствен­ные помехи системы обусловлены взаимным воздействием внутренних проводников путем емкостной и (или) индуктивной связи. Внешние помехи возникают за счет электромагнитного воздействия системы электропитания, цепей ввода и вывода сигналов. Ис­пользование МПП позволяет в 10 раз уменьшить электромагнитные помехи за счет печатных экранов.

Многослойная печатная плата со­стоит из ряда склеенных печатных слоев, в которых находятся сигналь­ные проводники, переходные отвер­стия, экраны, шины питания, кон­тактные площадки или выступы для присоединения выводов элементов. Сохраняя все достоинства печатного монтажа, МПП имеют дополнитель­ные преимущества:

– более высокая удельная плотность печатных проводников и контакт­ных площадок (20 и более слоев);

– уменьшение длины проводников, что обеспечивает значительное повышение быстродействия (например, ско­рость обработки данных в ЭВМ);

– возможность экранирования цепей переменного тока;

– более высокая стабильность пара­метров печатных проводников под воздействием внешних условий.

Недостатки МПП:

– более жесткие допуски на размеры по сравнению с ОПП и ДПП;

– большая трудоемкость проектирования и изготовления;

– применение специального техноло­гического оборудования;

– тщательный контроль всех операций;

– высокая стоимость и низкая ремон­топригодность.

В настоящее время МПП нашли применение для изготовления панелей ЭВМ, объединяющих конструктивно ИМС, ЭРЭ и коммутационные эле­менты, а также в космической и авиа­ционной аппаратуре. Основные спосо­бы получения МПП классифицируют по методу создания электрических межслойных соединений (рис. 2.23).

Рис. 2.23. Основные способы получения МПП.

В первой группе методов электриче­ская связь между проводниками, расположенными на различных слоях платы, осуществляется с помощью ме­ханических деталей:

– штифтов,

– закле­пок,

– пистонов,

– упругих лепестков.

МПП изготавливается из нескольких ДПП путем прессования, в отверстия вставляются предварительно облуженные штифты, которые затем под дей­ствием электрического тока, прохо­дящего через штифт, разогреваются, образуя с помощью припоя электриче­ское соединение с печатными провод­никами (рис. 2.24, а).В отверстия мо­гут вставляться также заклепки, писто­ны, которые облуживаются по торцам и развальцовываются (рис.2.24, б).Соединения могут осуществляться по соприкасающимся фланцам пистонов, а также путем соединения предвари­тельно отбортованных контактных площадок пистоном, что уменьшает размеры пакета (рис.2.24, в).Эти ме­тоды весьма трудоемки, плохо поддаются автоматизации и не обеспечива­ют высокою качества межслойных со­единений.

Рис.2.24Соединения с помощью штифта (а), пис­тонов, соприкасающихся

по фланцам (б), и предва­рительно отбортованных контактных площадок (в).

Метод выступающих выводов харак­теризуется тем, что при его осуществ­лении межслойные соединения обра­зуются за счет выводов, выполненных из полосок медной фольги, высту­пающих с каждого печатного слоя и проходящих через перфорированные отверстия в диэлектрических меж­слойных прокладках. Выводы отгиба­ются на наружную сторону МПП и закрепляются пайкой в специальных колодках. Метод включает следующие операции (рис. 2.25):

– изготовление заготовок из стекло­ткани и медной фольги (нарезка в размер);

– перфорирование стеклоткани;

– склеивание заготовок перфорирован­ного диэлектрика с медной фольгой;

– получение защитного рисунка схе­мы отдельных слоев;

– травление меди с пробельных мест;

– прессование пакета МПП;

– отгибка выводов на колодки и за­крепление их;

– облуживание поверхности выводов, механическая обработка платы по контуру;

– контроль, маркировка.

Рис 2. 25.Стадии формирования МПП методом выступающих выводов

1 - нарезка заготовок; 2 - перфорирование диэлектрика; 3 - нанесение рисунка на слой;

4 – травление меди; 5 –прессование пакета.

При данном методе используется бо­лее толстая медная фольга (до 80 мкм), платы допускают установку только ИМС с планарными выводами. Коли­чество слоев не превышает 20. Пре­имущества метода – высокая жест­кость и надежность межслойных со­единений, недостатки – сложность механизации процесса разводки выступающих выводов и их закрепления на плате, а также установки навесных элементов.

Метод открытых контактных пло­щадок основан на создании электри­ческих межслойных соединений с по­мощью выводов навесных элементов или перемычек через технологические отверстия, обеспечивающие доступ к контактным площадкам, и включает следующие операции (рис. 2.26):

Рис.2.26.Стадии формирования МПП методом открытых контактных площадок:

1 - получение заготовок; 2 - нанесение защитного рель­ефа на слой; 3 - травление меди;

4 - пробивка отвер­стий; 5- прессование пакета и выполнение соединений.

– получение заготовок фольгированного материала;

– нанесение защитного рисунка схе­мы на каждый слои;

– травление меди с пробельных мест и удаление резиста;

– пробивка отверстий в слоях;

– прессование пакета МПП;

– облуживание контактных площадок, выполнение электрических соеди­нений.

В слоях вырубаются отверстия: для штыревых выводов круглые, для планарных прямоугольные. Для увеличе­ния площади контакта диаметр площа­док делают больше диаметра отверстий. МПП являются ремонтопригодными, так как допускается перепайка выво­дов ЭРЭ. Количество слоев – до 12.

Недостатки метода: возможность по­падания клея на контактные площад­ки при склеивании слоев и трудоем­кость его удаления скальпелем; труд­ность автоматизации процесса пайки выводов в углублениях; отсутствие электрической связи между слоями; низкая плотность монтажных соеди­нений.

Метод металлизации сквозных от­верстий характеризуется тем, что со­бирают пакет из отдельных слоев фольгированного диэлектрика (внеш­них – одностороннего, внутренних – с готовыми печатными схемами) и межслойных склеивающихся прокла­док, пакет прессуют, а межслойные соединения выполняют путем метал­лизации сквозных отверстии. Технологическии процесс включает сле­дующие операции (рис. 2.27)

– получение заготовок фольгированного диэлектрика и межслойных склеивающихся прокладок;

– получениерисункапечатнойсхемывнутреннихслоевфотохимическимспособом аналогично ДПП;

– прессование пакета МПП при тем­пературе 160 – 180°С и давлении 2 – 5 МПа;

– сверление отверстии в пакете;

– получение защитного рисунка схе­мы наружных слоев фотоспособом;

– нанесение слоя лака;

– подтравливание диэлектрика в от­верстиях в смеси серной и плавико­вой кислот в соотношении 4:1 при температуре (60±5)°С в течение 10–30с. При этом растворяется смола стеклопластиков и стеклоткань склеивающих прокладок для устранения следов наволакивания смолы, обнажения контактных площадок и увеличения площади контактирования;

– химическое меднение сквозных от­верстий;

– удаление слоя лака;

– гальваническое меднение отверстий и контактных площадок до толщи­ны 25–30 мкм в отверстиях;

– нанесение металлического резиста гальваническим путем (сплавы Sn – Pb, Sn – Ni);

– удаление защитного слоя рисунка и травление меди с пробельных мест;

– осветление (оплавление) металличе­ского резиста;

– механическая обработка МПП (сня­тие технологического припуска);

– контроль и маркировка.

Рис. 2.27.Стадии формирования МПП методом металлизации сквозных отверстий:

1 - получение заготовок; 2 - нанесение рисунка на внут­ренние слои; 3 - прессование пакета;

4 - сверление от­верстии; 5 -подтравливание диэлектрика.

Качество МПП, изготовленных ме­тодом металлизации сквозных отверстий, в значительной мере зависит от надежности межслойных соединений – торцов контактных площадок с метал­лизированными отверстиями. Надеж­ное соединение образуется при удалении со стенок отверстий пленки эпоксидной смолы, наволакиваемой при сверлении. Наиболее распростра­ненный способ очистки отверстий пе­ред металлизацией – химическое под­травливание диэлектрика стенок от­верстий. Для этого используются рас­творы кислот или их смеси, однако смеси кислот склонны проявлять про­дукты травления в порах диэлектрика. За рубежом наибольшее распростра­нение получил способ травления ди­электрика не в смеси кислот, а снача­ла в серной, а затем в плавиковой.

При повышении температуры раство­ра с 30 до 60°С глубина подтравливания диэлектрика увеличивается от 2–5 до 40–50 мкм, а при увеличении времени воздействия травящего раство­ра с I до 5 мин глубина подтравливания растет от 25–50 до 100–120 мкм.

В связи с тем что для подтравливания используются агрессивные рас­творы (смесь горячих концентриро­ванных кислот), требующие постоян­ного контроля и последующей нейтрализации обработанных заготовок, был предложен способ сухого плаз­менного травления. Он обеспечивает хорошую адгезию меди в отверстиях, короткий цикл обработки и отсутст­вие побочных эффектов. В качестве реагента используется низкотемпера­турная плазма из смеси газов, напри­мер кислорода и фреона, при темпе­ратуре 50–350 °С и давлении 0,13–260 ГПа. Плазма содержит свободные радикалы (до 90%) и ионы (1%). Реко­мендуется перед травлением предварительный подогрев плат до 50–70 °С. Плазма превращает эпоксидную смолу в летучее вещество, легко удаляемое из отверстий. Никаких промывок и сушки при плазменном методе не тре­буется. Этот процесс сухой и полно­стью автоматизирован. При обработке каждая МПП помещается в простран­ство между двумя параллельно распо­ложенными алюминиевыми пластина­ми – электродами. Электроды имеют отверстия, совпадающие с отверстия­ми в МПП.

Метод металлизации сквозных от­верстий является основным и наибо­лее перспективным в производстве МПП, так как не имеет ограничения количества слоев, легко поддается ав­томатизации и обеспечивает наиболь­шую плотность печатного монтажа. Он позволяет изготавливать МПП, при­годные для размещения на них эле­ментов с планарными и штыревыми выводами. Более 80 % всех МПП, производимых в мире, изготавливает­ся этим методом.

Метод попарного прессования харак­теризуется тем, что внутренние слои МПП изготавливаются на одной сто­роне заготовки из двустороннего фольгированного диэлектрика, межслойные соединения – путем химико-гальванической металлизации отверстий в заготовках, полученные слои прессуются, а рисунок на наружных сторонах платы выполняется комби­нированным позитивным методом.

В конструкции МПП нет прямой электрической связи между внутрен­ними слоями многослойной структу­ры, она осуществляется через внеш­ние слои. Сложность переходов не дает возможности получить высокую плотность печатного монтажа. Число слоев МПП – не более четырех. Тех­нологический процесс включает сле­дующие операции (рис. 2.28):

Рис 2.28. Стадии формирования МПП методом попарного прессования.

1 - получение заготовок, 2 - получение рисунка на внут­ренних слоях,

3 - выполнение межслойных переходов, 4 - прессование пакета.

– получение заготовок;

– нанесение защитного рисунка схемы внутренних слоев;

– травление меди с пробельных мест и удаление защитного рисунка;

– выполнение межслойных электрических соединений между внутренними и наружными слоями химикогальванической металлизацией;

– прессование пакета МПП (металлизированные отверстия переходов заполняются смолой во избежание их разрушения при травлении);

– сверление отверстий и нанесение защитного рисунка схемы наруж­ных слоев;

– химическое меднение сквозных от­верстий;

– гальваническое меднение и нанесение металлического резиста;

– травление меди на наружных слоях;

– осветление металлического резиста;

– механическая обработка;

– контроль, маркировка.

Попарным прессованием изготав­ливаются МПП, на которых разме­щаются навесные элементы с планарными и штыревыми выводами. Не­достатки метода – низкая производи-тельность, невозможность получения большого числа слоев и высокой плотности печатного монтажа.

Метод послойного наращивания ха­рактеризуется тем, что при его осуще­ствлении межслойные соединения вы­полняют сплошными медными пере­ходами (столбиками меди), располо­женными в местах контактных площа­док. Технологический процесс включа­ет следующие операции (рис. 2.29):

Рис. 2. 29Стадии формирования МПП методом послойного наращивания.

1 - получение заготовок; 2 - перфорирование диэлектри­ка; 3 - наклеивание фольги;

4 - выполнение межслойного перехода; 5- прессование пакета.

– получение заготовок стеклоткани и фольги;

– перфорирование диэлектрика;

– наклеивание перфорированной за­готовки диэлектрика на фольгу;

– гальваническая металлизация отвер­стия и химико-гальваническая ме­таллизация второй наружной по­верхности заготовки;

– нанесение защитного рисунка схемы и травление меди;

– гальваническое наращивание меди в отверстиях и химико-гальваническая металлизация наружной поверхности диэлектрика;

– травление меди с пробельных мест;

– получение многослойной структуры путем многократного повторения операций химико-гальванической металлизации и травления;

– напрессовывание диэлектрика;

– получение защитного рисунка печатного монтажа наружного слоя;

– травление меди с пробельных мест и облуживание припоем;

– механическая обработка;

– контроль и маркировка.

Послойным наращиванием получают МПП, на которых размещают только навесные элементы с планарными вы­водами. Недостатком данного метода является нетехнологичность конструк­ции, так как нельзя использовать фольгированные диэлектрики и необходи­мо вести последовательный цикл изготовления многослойной структуры. Стоимость изготовления МПП высо­кая. Достоинства метода – возмож­ность получения большого числа сло­ев (5 и более) и самые надежные межслойные контактные соединения. Результаты качественного сравнения МПП, изготовленных различными ме­тодами, приведены в табл. 2.8.

Таблица 2. 8.Сравнительная характеристика методов при изготовлении МПП

  Показатель Метод изготовления
Механи- ческими деталями Попарным прессова- нием Открытых контактн. площадок Выступа-ющих выводов Послойного наращив. Металлизац. сквозных отверстий
Количество слоев Плотность печатного монтажа Надежность межслойных соединен. Стойкость к внешним воздействиям Ремонтопригодность Технологическая себестоимость Н Н С Н В С С С Н С Н В С В С С В В С В С В В С В В С С Н С

К базовым технологическим про­цессам получения МПП относятся прессование пакета, механическая об­работка и контроль. Прессование па­кета МПП является одним из самых важных процессов изготовления МПП, так как от качества его выполнения зависят электрические и механические характеристики готовой МПП. Техно­логический процесс прессования со­стоит из следующих операций:

– подго­товка поверхности слоев перед прес­сованием;

– совмещение отдельных сло­ев МПП по базовым отверстиям и сборка пакета;

– прессование пакета.

Для подготовки поверхности слоев к прессованию применяют механиче­скую зачистку абразивами, обезжири­вание поверхности органическими растворителями и легкое декапирова­ние фольги. При прессовании экранов с большими участками фольги ее поверхность оксидируют для лучшей ад­гезии при склеивании. Текстура на­полнителя (прокладок из стеклоткани) должна быть равномерно пропитана смолой, иначе при травлении химиче­ские растворы проникают в свобод­ные полости и снижают тем самым сопротивление изоляции.

Совмещение отдельных слоев МПП по базовым отверстиям осуществля­ют в специальном приспособлении (рис.2.30), состоящем из верхней 1 и нижней плит 5, изготовленных из стали.

Рис. 2.30.Приспособление для прессования паке­та МПП.

1 - верхняя плита; 2 - направляющая колонка; 3 - фик­сирующий палец;

4 - отверстие для термопары; 5 - ниж­няя плита.

Толщина плит 15–20 мм и за­висит от габаритов изготавливаемой платы. Плиты шлифуют по обеим плоскостям, направляющие колонки 2 обеспечивают их полную параллель­ность. В торцах плит выполняют от­верстия для термопар 4. Габаритные размеры нижней плиты должны быть больше прокладочных листов на 30–50 мм с каждой стороны по перимет­ру, так как при прессовании возможно вытекание значительного количества смолы. Фиксирующие штыри 3 рас­полагают через 100–150 мм по пери­метру платы в пределах технологиче­ского поля.

Для прессования МПП используют специализированные многоярусные гидравличес-кие прессы, оборудован­ные системами нагрева, охлаждения плит и поддержания температуры с точностью ±3 °С, регуляторами подачи давления с точностью порядка 3 %.Нагрев плит пресса осуществляют ли­бо перегретым паром, либо электриче­ством. Для ускоренного охлаждения в плиты встраивают коллекторы для по­дачи проточной водопроводной воды. На качество прессования сущест­венно влияет текучесть смолы и время ее полимеризации. Основным факто­ром в процессе прессования является правильно выбранный момент прило­жения максимального давления. Если создать давление до начала полимери­зации смолы, то значительное ее ко­личество будет выдавлено, а если по­сле полимеризации, то получается плохая проклейка слоев, что приводит к расслоению. При большой скорости возрастания температуры основные реакции отверждения проходят быст­ро, продукт получается хрупким, не­однородным, со значительными внут­ренними напряжениями. С уменьше­нием скорости нагрева механические свойства диэлектрика улучшаются.

Сборку пакета МПП осуществляют в режимах «холодного» и «горячего» прессования. При первом режиме пресс-форму с МПП помещают между холодными плитами пресса, в котором происходит ее последующий нагрев до необходимой температуры со скоро­стью

15 °С/мин. На первой стадии прессования создают незначительное давление на пакет (0,15-0,2 МПа), а когда смола загустевает при темпера­туре 130-140 °С, давление поднимают до 5-8 МПа. Окончательное отвержде­ние продолжается в течение 40 мин, затем плиты пресса быстро охлаждают водой и, когда температура в пакете снизится до 40°С, пресс раскрывают и извлекают готовый пакет (рис.2.31). При «горячем» прессовании плиты нагревают до 160-170°С, это уско­ряет процесс прессования, дальней­ший нагрев ведут со скоростью 15- 50 °С/мин.

Рис. 2.31.Режим прессования пакета МПП:

1.2- нагрев пакета, 3 - начало полимеризации, 4 - по­лимеризация под

давлением, 5 - охлаждение пакета

Для снятия напряжений, возникаю­щих в пакете в процессе прессования и вызывающих затем коробление пла­ты, после обрезки облоя МПП под­вергают дополнительной тепловой об­работке. Для этого ее наглухо зажи­мают между двумя жесткими пласти­нами и помещают на 30–40 мин в тер­мошкаф при температуре 120–130°С, затем оставляют в печи до медленного остывания.

Установленные режимы прессова­ния требуют постоянной корректи­ровки в зависимости от изменения технологических свойств склеиваю­щихся прокладок стеклоткани. Поэтому стеклоткань периодически про­веряют на содержание связующей смолы, ее текучесть, время полиме­ризации. Для более точного контроля времени приложения максимального давления при прессовании пакета из­меряют электрическое сопротивление связующей смолы с помощью датчи­ка, представляющего собой электроды в форме гребенки, полученной на фольгированном диэлектрике. Элек­трическое сопротивление падает с 105 МОм до 1 МОм в момент полного расплавления смолы, а затем растет в процессе ее полимеризации.

Для прессования МПП применяют специализированные многоярусные гидравлические прессы, оборудован­ные системами нагрева и охлаждения плит, устройствами для регулирования технологических режимов. Прессы обеспечивают плоскостность и парал­лельность плит в пределах 0,1 мм, время нагрева плит до рабочей темпе­ратуры 20 мин, точность поддержания температуры на их плоскости ±3 °С, давления ± 3 %. Повышение произво­дительности прессования достигается на автоматических линиях (например, модель S75 MRT-372C-X-X-G фирмы Pasadena Hydraulies, США), в которых по заданной программе пресс-формы с обрабатываемыми пакетами МПП пневматическим автооператором пере­мещаются из позиции загрузки в на­гретые плиты гидравлического пресса. Плиты сжимают пакеты в пресс-формах при низком давлении в тече­ние заданного времени, а затем авто­матически переключаются на высокое давление. В позицию загрузки уста­навливается следующая партия пресс-форм. После выдержки заданного тай­мером времени полимеризации свя­зующей смолы в пакетах МПП горя­чие и холодные плиты размыкаются, а автооператор перемещает прошедшие стадию полимеризации пакеты из го­рячих плит пресса в холодные для их остывания при заданном давлении.

Одновременно на позицию прессова­ния подается следующая пресс-форма из позиции загрузки, после чего пли­ты зажимаются и цикл повторяется.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: