Переходные процессы в электрической цепи

Переходные процессы не являются чем-то необычным и характерны не только для электрических цепей. Можно привести ряд примеров из разных областей физики и техники, где случаются такого рода явления.

Переходным режимом (или переходным процессом) называется режим, возникающий в электрической цепи при переходе от одного стационарного состояния к другому, чем-либо отличающемуся от предыдущего, а сопутствующие этому режиму напряжения и токи — переходными напряжениями и токами. Изменение стационарного режима цепи может происходить в результате изменения внешних сигналов, в том числе включения или отключения источника внешнего воздействия, или может быть вызвано переключениями внутри самой цепи.

Любое изменение в электрической цепи, приводящее к возникновению переходного процесса называют коммутацией. В большинстве случаев теоретически допустимо считать, что коммутация осуществляется мгновенно, т.е. различные переключения в цепи происходят без затраты времени. Процесс коммутации на схемах условно показывается стрелкой возле выключателя.

Переходные процессы в реальных цепях являются быстропротекающими. Их продолжительность составляет десятые, сотые, а часто и миллионные доли секунды. Сравнительно редко длительность этих процессов достигает единицы секунды.

Естественно возникает вопрос, надо ли вообще принимать во внимание переходные режимы, имеющие столь короткую длительность. Ответ может быть дан только для каждого конкретного случая, так как в различных условиях роль их неодинакова. Особенно велико их значение в устройствах, предназначенных для усиления, формирования и преобразования импульсных сигналов, когда длительность воздействующих на электрическую цепь сигналов соизмерима с продолжительностью переходных режимов.

Переходные процессы являются причиной искажения формы импульсов при прохождении их через линейные цепи. Расчет и анализ устройств автоматики, где происходит непрерывная смена состояния электрических цепей, немыслим без учета переходных режимов.

В ряде устройств возникновение переходных процессов, в принципе, нежелательно и опасно. Расчет переходных режимов в этих случаях позволяет определить возможные перенапряжения и увеличения токов, которые во много раз могут превышать напряжения и токи стационарного режима. Это особенно важно для цепей со значительной индуктивностью или большой емкостью.

Возникновение переходных процессов связано с особенностями изменения запасов энергии в реактивных элементах цепи. Количество энергии, накапливаемой в магнитном поле катушки с индуктивностью L, в которой протекает ток iL, выражается формулой: WL = 1/2 (LiL2)

Энергия, накапливаемая в электрическом поле конденсатора емкостью С, заряженного до напряжения uC, равна: WC = 1/2 (CuC2)

Поскольку запас магнитной энергии WL определяется током в катушке iL, а электрической энергии WC — напряжением на конденсаторе uC, то во всех электрических цепях три любых коммутациях соблюдаются два основных положения: ток катушки и напряжение на конденсаторе не могут изменяться скачком. Иногда эти положения формулируются иначе, а именно: потокосцепление катушки и заряд конденсатора могут изменяться только плавно, без скачков.

Переходные процессы в электрических цепях с двумя накопителями энергии. Короткое замыкание цепи RLC. Апериодический и колебательный режимы.

В данном случае электрическая цепь после коммутации содержит два реактивных элемента - индуктивность и емкость. Это означает, что дифференциальное уравнение цепи должно иметь второй порядок и поэтому должны быть определены два независимых начальных условия. До коммутации цепь находилась в состоянии покоя, что соответствует нулевым начальным условиям: uC (0+) = uC (0-) = 0; i (0+) = i (0-) = 0.

Согласно второму закону Кирхгофа для цепи после коммутации: uR (t) + uL (t) + uC (t) = U0;

Напряжение на резисторе uR (t) и напряжение на индуктивности uL (t) выразим через uC (t):

.

Полученное уравнение является линейным дифференциальным неоднородным уравнением второго порядка с постоянными коэффициентами.

Для определения свободной составляющей записываем соответствующее характеристическое уравнение LCp2 + Rcp + 1 = 0 и определяем его корни:

где введены следующие обозначения: a = R / 2L - коэффициент затухания; w 0 = 1/ Ö LC - резонансная частота контура. Далее записываем выражение для свободной составляющей

.

Вынужденную составляющую решения определим как установившееся значение напряжения на емкости в режиме постоянного тока в цепи после коммутации.

Из уравнения по второму закону Кирхгофа получим uCуст = uCвын = U0. Таким образом, полное решение для напряжения

и для тока.

Выражение для тока необходимо для определения постоянных интегрирования. Используя нулевые начальные условия, при t = 0 получим: uC (0+) = A1 + A2 + U0 = 0; i (0+) = CA1p1 + CA2p2 = 0. Решение этой системы уравнений дает выражения для постоянных интегрирования:

Апериодический режим.

Условие a > w 0, как нетрудно убедиться, эквивалентно соотношениям: R > 2r и Q < 0.5, где r = Ö L / C - характеристическое сопротивление контура, а Q = r / R - его добротность. Таким образом, в рассматриваемом случае контур имеет значительные потери, т.е. является низкодобротным.

При этом p1,2 = - a ± b, где b = < a, являются вещественными отрицательными числами. Подставляя эти корни в (1.29) и (1.30), получим решение для функции напряжения на емкости:

.

Качественный график полученной функции показан на рис. 1.26. Переходное напряжение на емкости имеет апериодический (неколебательный) характер и представляет из себя монотонно возрастающую функцию. Происходит апериодический заряд конденсатора до напряжения источника U0.

На этом же рисунке приведены качественные графики тока i (t) и напряжения на индуктивности uL (t), при построении которых принималось во внимание то, что в цепи апериодический режим переходных процессов, а также соотношения, связывающие указанные функции с найденной функцией uС (t). Начальные значения i (0+)=0 и uL (0+)= U0, что следует из нулевых независимых начальных условий и уравнения Кирхгофа (1.24) для момента времени t = 0+: Ri (0+) + uL (0+) + uC (0+) = uL (0+) = U0.

Конечные или установившиеся значения, согласно рис. 1.25, равны iуст = 0; uLуст = 0. Поскольку напряжение на индуктивности пропорционально производной от тока, то оно должно быть положительным во время возрастания тока и отрицательным во время его убывания.

Колебательный режим.

При выполнении условия a < w 0 или R < 2r и Q > 0,5 корни (1.27) характеристического уравнения будут комплексными p1,2 =- a ± j = - a ± jw k, где w k = - угловая частота свободных затухающих колебаний. При подстановке этих корней в (1.29) и (1.30) получим

Далее, используя формулы Эйлера для экспонент с мнимыми показателями, окончательно найдем:

uC (t) = U0 - U0 e- a t [(a / w k) sinw kt +cosw kt ].

Качественный график полученной функции напряжения на емкости показан на рис. 1.27.

При малых потерях в контуре (R < 2r) переходный процесс имеет характер затухающих гармонических колебаний. Степень затухания зависит от показателя экспоненты a = R / 2L, который называется коэффициентом затухания. Период затухающих колебаний Tk определяется круговой частотой w k и равен .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: